

HONORARY NATIONAL OFFICIALS

CHAIRMAN
Mick Ryan
164 Chesterfield Drive
Riverhead
Sevenoaks, Kent TN13 2EH
Tel: (0732) 453530

TREASURER
Jennifer Coldsmith

MEMBERSHIP SECRETARY
Jack Cohen
30 Brancaster Rd
Newbury Park
Ilford, Essex IC2 7BP
Tel: 01-597 1229
ASSISTANT EDITOR
Henry Velleman
52 Ventnor Drive
Totteridge N20 8BS

DISCOUNTS ASSISTANT
David Murray
8 Enticott Close
Whitstable
Kent CT5 3ET

VICE-CHAIRMAN
Mike Todd
27 Nursery Cardens
Lodgefield
Welwy Carden City
Herts AL7 1SF

Tel: 01-651 5436

DISCOUNTS ASST. VIC-20
Derek Hoare
10 Snell Hatch
West Green
Crawley
Sussex RH11 7JB

EDITOR

Hugh de Clanville 45 Woodland Grove Weybridge Surrey KT13 9EQ

DISCOUNTS OFFICER John Bickerstaff 45 Brookscroft Linton Glade Croydon CRD 9NA

ASSISTANT EDITOR Tom Cranstoun 109 Dalmeny Rd Addiscombe Croydon

DISCOUNTS ASSISTANT (stockholder - disks, \&C)
Brian Wise
17 Knighton Close
South Croydon
Surrey CR2 6DP
NETWORKS/COMAL
Brian Crainger
73 Minehead Way
Stevenage
Herts SGSI 2 HZ
(Systel 438727925)

SOFTWARE ORGANISER
Alfred Minter
2 Whitefriars Way
Sandwich
Kent CT13 9AD
Tel: (0304) 617209
(Software Librarians - see inside back cover)

INDEPENDENT CDMMIDORE PRODUCTS USERS GRDUP newsletter

Vol 6 No 6 NOVEMBER 1984
382 Editor's Notebook383 Protection Copyright in Software
385 Inside Commodore DOS - Review
387 Deciphering Printer Manuals
390 Network News
394 Plus 4/C 16 Preliminary Memory Map
405 Superbase Corner
418 Christmas is Coming ...
420 The AEA Micropatch - Review
426 Tee-Switch for Printers
428 Teach Yourself Programming 6 - Answers
429 The Great ICPUG Competition
432 Disk File - Sector 11
438700 Series - Some Notes
441 Comal Corner
44664 Library
448 An Improved Format Subroutine
452 C 64/Spectrum Emulator
453 National Committee for 1985
454 Regional Group Contacts
460 Odds \& Ends
4611541 Express - Review Update
462 Discount Comer
463 Readers Write
464 Members' Sales and Wants
Europe's first independent magazine for CBM users

EDITOR'S NOTEBOOK

As everyone knows, we have been falling back a little on schedule of late, but we - that is 1 and my assistant editors and the Committee decided to make a major effort to catch up and to bring out the November issue by the end of November, surprising you all.

What actually happened was that I myself was rather surprised, after 40 years of avoiding any major debacle on two wheels, to skid on a patch of oil on a roundabout on my trusty motorcycle on November 1st and do absolutely no good to one of my legs. This involved some time in hospital and rather restricted mobility thereafter, so the best-laid plans of editors received a setback.

However, everyone, and particularly Henry Velleman, has rallied round and we have produced a 'Christmas' issue for you under rather difficult conditions. If you find any ghastly errors, or feel it is not quite up to our usual standards, please bear with us; we just have not been able to check it as thoroughly as we would have wished. However, Mike Todd's amusing Great !CPUG Competition on p429 should make up for a lot of faults.

One vital thing that 1 have omitted to do, to the increasing annoyance of the Membership Secretary for at least two issues now, is to announce that copies of the valuable May 1983 issue are now available again from him (Jack Cohen). This was the issue that contained Sector 6 of the Disk File, and when it was out of print many people were disappointed. Now it is in stock again and those who want to complete their collection of, particularly, the Disk File, may apply to Jack.
I am not going to attempt to fill my page this month. I shall sign off with very best wishes for Christmas to all our readers, hopes for good computing and everything else for us all in 1985, and thanks to all those who have been so helpful with the Newsletter throughout the year. May any crashes you have be restricted to your computers.

PROTECTION COPYRIGHT IN SOFTWARE

by Alistair Kelman

(This article originally appeared in ICPUG SE Newsletter October (No 22), whither it had come, with the author's permission, from the ICPUG pages of COMPUNET. We are indebted to everyone involved for permission to reproduce it here.)

In Britain and in most of Europe it is not necessary for an author to take particular formal steps to reserve .copyright in any work he creates. A copyright arises the first time the work is written down and it seems probable that English courts will consider that writing to disk or tape will be considered 'writing' for the purposes of the law of copyright. Although there have been no decided cases in the United Kingdom on the subject computer software is considered to be a form of literary work for the purposes of the law of copyright and therefore when it is written down a copyright arises in it lasting for the life of the author plus fifty years.

The only right granted by copyright is a right to stop the work being copied. This means that if a person independently created an identical work to that of an author it would not infringe copyright in the author's work since it would not have been created by copying. However if the person has had access to the author's work and his work was written later than that of the author a court would look at the works and, if they were similar, would be likely to assume that copying had taken place. It is therefore important for evidential purposes for a software author to keep a note of the history of the development of his program and a record of its state at key stages. A suggested method of so doing is as follows:

- Keep a work diary into which notes giving dates and times when work was done are inserted.
- When the work is finished or when it has reached a critical state make a listing of the program, place it in an envelope, address the envelope to yourself; seal it very firmly with sealing wax and do one of two things:
- EITHER send it by Registered Post to yourself and upon receipt keep the mailing slip and the unopened packet in a safe place until they are
needed in litigation
- OR get your bank to keep the envelope in their vault until it is needed in litigation.

By this method it will always be possible to prove that a program existed in a particular form on a particular day.

Although it is not needed for protection in the United Kingdom it is important to place a copyright notice in all copyright works. This is to reserve copyright in countries such as the United States which require such a notice. The notice is made up of three parts, all of which must be present. First should be the word "COPYRIGHT" or the abbreviation "COPR" or the letter "C" in a circle. Second should be the name of the copyright owner which for home users will be the name of the author. Third should be the year in which the program was written. These three parts make up the copyright notice and should be inserted in a REMark statement and also if possible in a form in which they will appear on screen at the start of the program and hidden in the program so that they will appear on screen when an unusual combination of keys is pressed.

Before a program is marketed if you are concerned about it being pirated in the United States it is important to register it with the United States Copyright Office which is part of the Library of Congress in Washington D.C. The US Copyright Office will send on request copies of Form TX which is the form needed to register computer software under American law. By sending a listing of the program together with a completed Form TX and a cheque for $\$ 10$ the copyright owner can claim very substantial damages for infringement when it takes place and most important of all gets an immediate right to sue for infringement in the United States. In practise, since American lawyers are allowed to work on a contingent fee basis, a software author who had registered his program could, if he found infringement taking place in the United States, get an American attorney to fund and fight a copyright infringement action in the United States for a percentage of the possible winnings at no additional cost to himself.

INSIDE COMMODORE DOS--REVIEW

by Mike Todd
This book describes itself as "the complete guide to the 1541 disk operating system" and I think that sums it up.

It is the same size as Raeto West's book with over 500 pages, but its price is rather hefty at nearly $£ 20.00$. It is written in three distinct sections; the first is the main body of text of two hundred or so pages, followed by another two hundred of detailed ROM and RAM lists. The final pages are devoted to additional program listings not given in the main text.

The book starts by introduciing the reader to exactly what a disk operating system is. This decribes the command channel and the commands that can be sent to it, followed by a thorough investigation of disk formatting, the layout of the disk itself and how sectors are laid out.

Chapter 4 is the start of the meat of the book and describes in great detail how the directory is made up, the structure of all the different file types - and much more besides. Then the techniques of direct access programming are described, through all the memory and block read/write commands commands, and this is further developed by examining some uses to which these can be put. The main one being to access the job queue and use it to read and write sections of the disk.

I suppose it would be possible (somewhat cruelly perhaps) to call this book a pirate's handbook since chapter 7 starts to delve into the subject of DOS protection. This is the technique used by software houses to protect against illicit copying of their programs.

However, it makes an ideal route into the bowels of the more advanced disk techniques and chapter 7 describes the Commodore data encoding scheme based around a technique known as Group Code Recording. This is the encoding of a standard 8 -bit byte into a 10 -bit word before writing it to the disk surface.

Protection techniques are wide ranging, and this chapter describes many of the deliberately induced errors which are used to "mark" a protected disk and which will be checked for by the running software.

These errors range from simple data block checksum errors, through to completely destroying inidividual tracks and the book includes complete BASIC listings of programs to create these types of errors.

The programs are described in some detail and, if you manage to
understand the techniques used, then you will have a thorough grasp of exactly how the drive operates, athough I did find irritating the constant reference to errors by their numbers rather than type.

Chapter 8 is called "Getting out of trouble" and covers many of the problems both beginners and advanced programmers will meet, from accidentally scratching a file or "NEWing" a disk, to unclosed files.

Until now, we have only had tantalising glimpses of the depths of the Commodore DOS and chapter 9 starts to described the routines within the ROM set, how the DOS is organised, and how its major routines work.
It also covers the recording process itself. The diagrams and explanations are easy to read and describe the process in great detail.

The memory maps are the most thorough that you will find anywhere and are partly based on the original Commodore source code, with many additional comments by the authors. Every byte of RAM and ROM is documented in detail, complete with labels, and should really be read in conjunction with a disassembly of the ROM contents, something the book does not supply.

The book is unashamedly aimed at the advanced disk user and will suit those just begining to delve into the 1541, up to those who thought they knew it like the back of their hand.

It is full of clearly listed example programs, many of which are extremely valuable disk utilities, others are more specifically aimed at producing the errors described - and they workl Any machine code required is included as DATA statements within these programs, although assembler source listings are included for clarity.
Perhaps not surprisingly, not all protection techniques are described, and there are a couple of minor errors, but this is a book I wholeheartedly recommend, and I'm sure it will acquire much the same status as the Raeto West's book did for the PET.

The two authors, Dick Immers and Geriy Neufeld, are both very knowledgable disk users and they acknowledge ICPUC as a major source of inspiration and insight. Their experience with the 1541 is extremely well presented and easy to read.

It is published in the USA by DATAMOST and distributed in the UK by Prentice-Hall at something a little short of $£ 20.00$ and a disk containing all the programs should be available.

If you believe this book is likely to be beyond you, Gerry Neufeld is soon to release a beginners' guide to the disk drive.

DECIPHERING PRINTER MANUALS

I have never been a lover of Commodore printers and along with many other Commodore users I have looked to the Japanese to fulfil my printer needs. Commodore are renowned for the pathetic quality of their manuals and those of us who have bought Japanese printers may have wondered if there was an international plot to destroy the brain cells of the microcomputer user by publishing instruction manuals in the form of anagrams and other devious word games.

Part of my assistance to the Editor consists of reading newsletters and magazines from other groups on the lookout for articles which may be of interest to the general ICPUG membership. A recent perusal of the Home Office Amateur Computing Club magazine for August ' 84 showed that it isn't only Commodore owners who are afflicted by the international plot described above; even Her Majesty's employees are affected! A very enlightening article called " How to Drive a Printer From BASIC " by Ronald Hewlett attempted to unravel some of the mysteries of the average printer manual. It is not appropriate to reproduce this article in full as it is written for micro users in general rather than Commodore users specifically. However I would like to quote rather freely as I'm sure many readers will find it truly informative and of help to them in making fuller use of the potential of their printers.

Printer manuals have a strange habit of giving examples such as:LPRINT "ABCD";CHR\$(\&HE);"EFGH";CHR\$(\&HD).

What on earth does this garbage mean? Mr Hewlett will now explain.
LPRINT - this is equivalent on Commodore computers to 'PRINT\#4,' where a channel to the printer has already been OPENed using OPEN4,4. This command diverts PRINTing from the screen to the printer.
" $A B C D$ " - will be printed as $A B C D$
CHRS(\&HE) - if you typed this in as it is you would get a SYNTAX ERROR because BASIC only allows a number between 0 and 255 as the argument to CHRS. What it is intended to mean is that ' $8 H$ ' shows that the following letter is in hexadecimal notation ie that the ' E ' is actually Hex ' $O E^{\prime}$ which is decimal 14. In standard Epson code (which virtually all current printers obey) CHR\$(14) commands the printer to print following
characters in double width.
"EFGH" - prints EFGH as double width characters.
CHR\$(\&HD) - as explained above this is equivalent to Hex ${ }^{\prime} 0 D^{\prime}$ or decimal 13 and simply means Carriage Return. This forces the printer to actually printout the ABCDEFCH and then move the paper up one line and reset the print head to the lefthand edge of the paper ready to print further data. On Commodore computers it is not necessary to send CHRS(13) at the end of a line as long as a semi-colon ' $;$ ' is NOT used as the last character as it has been in the above example. One mystery solved ... onto the next:-

Many printer commands make use of ESCape codes to produce special effects. Time for another example ...

ESC-(minus)+(n)D(for underline print mode set/reset) ($n=0$ or 1)
The explanation is as follows:-
ESC - this signifies an ESCape sequence and is represented by the ASCII code 27 decimal or Hex ' 1 B '. To actually send ESC to the printer replace it by CHR\$(27).
-(minus) - this is attempting to show a minus sign '-1 as the character to follow ESC. The minus sign is the equivalent of ASCII code 45 decimal or Hex '2D' and can be sent to the printer as CHR\$(45) or simply as "-" (ie a minus sign within double quote marks).
$+(n) D$ etc - the ' n ' within brackets is symbolising a number and the ' D ' that it is decimal. The rest of the line is simply attempting to explain that ' n ' should be replaced by ' 1 ' to turn underline on and by 0^{\prime} ' to tum underline off!

In other words
PRINT\#4,CHR\$(27);CHR\$(45);CHR\$(1);"This will printout underlined"
will print all following text eg "This will ...etc" underlined. By replacing the $\operatorname{CHR\$ (1)}$ by $\operatorname{CHR\$ (0)~the~underlining~is~switched~off.~}$

The example programs given in the manuals are generally no help as they
often mix up several special features in the one example without explaining this or even making use of REMs to clarify what each line of the example is supposed to do. Armed with the information contained in this article you should now find that the list of control codes which are normally produced as an appendix in the manual become an essential quick reference guide to the intricacies of your printer.

Just to give one last piece of assistance the following are a few examples of some of the more useful control code sequences:-

PRINT\#4,CHR\$(15);"This prints condensed characters"
PRINT\#4,CHR\$(18);"This cancels condensed printing"
PRINT\#4,CHR\$(27);CHR\$(69);"This gives emphasised printing and can be combined with other control sequences to produce, for example, emphasised double width characters"
PRINT\#4,CHR\$(27);CHR\$(70);"this turns off emphasised printing"
I hope this article will encourage you to re-read your printer manual in a new light and be able to make full use of all the clever features those Japanese gentlemen built-in. I'm sure they didn't really mean to confuse us all beyond belief!

TEACH YOUR GRANDMOTHER 8

Why write unnecessary code? Grandma recently showed me the following
10 IF ANS $=$ " Y " THEN OPEN1,4
20 IF AN\$ = "N" THEN OPEN1,3
In cases where you are testing for only one of two outcomes you don't need two "IF" tests. Assume the most likely result and only test for the alternative. The above example could be simplified to one line as follows:
$10 \mathrm{CH}=3$: IF ANS = "Y" THEN CH=4: OPEN1,CH

by Brian Grainger (Systel 438727925)

It is now the 20th November and have things changed since the last newsletter? Well you might not think so from the inactive ICPUG pages on Prestel but I can assure you that behind the scenes things are moving.

As you will see at the end of this piece a lot of you have joined in the fun on Prestel and even Compunet. Many thanks to all those who said how much they liked this piece in the newsletter.

As far as Prestel is concerned a lot has been going on. For a long time I have been unable to edit the ICPUG pages. It started when Prestel coordinated the computer related areas, i.e. Micronet, Clubspot and Viewfax. This, together with the fact that Clubspot became a main IP rather than a sub $\mathbb{I P}$, meant that the ICPUG pages had to move. During the move no editing was allowed. Unfortunately, after the move Prestel decided to take an awful long time to issue Clubspot with the new IDs and passwords. Eventually they got them and were just about to send out the ICPUG ID when Prestel decided to change them all again! This was probably due to the fact that a hacker had managed to infiltrate Prestel and do naughty things like read the mailbox of HRH Prince Philip. That's what the folklore says anyway. This week I got a new password so I hope, by the time you are reading this, that ICPUG is back on Prestel. You may not be able to find us however!! The front page is currently located at 8108122 but a further move is expected to 8102132. You "will always find us from the Clubspot index if we appear to have disappeared off the face of Prestel.

Last time I briefly mentioned the Timefame Letterbox, but by a mental aberration I called it Teleframe. I also mentioned that Timefame made a charge to upload pages which was also confusion on my part. Timefame is free and is great. If you want to find out what other Prestellers think about the latest news, or you want to put forward your own views, give Timefame a call. It can be found at page 81811 or index through from mailbox (P.7) by hitting 6,2,\# in quick succession. Be prepared for your phone bills to go up though! I spend a LOT of time on this. I might mention that Chatline does not seem to be keeping the high standard of Letterbox and I have long since stopped looking at it.

Probably due to the fact that it is all automatic and nobody is sifting the messages for rubbish removal.

Micronet have finally produced a modem for the 64. It is made by OEL and costs $£ 12365$ after an initial offer of £99.95. Micronet is beginning to look very professional now but they have gone and angered a lot of people, including ICPUG, by putting up Commodore 64 software in non CET format. For the non technofreaks amongst you CET was an unwritten standard for Telesoftware. It was used for Micronet PET programs as well as Telesoftware on Teletext. The beauty of it was, of course, that the software could be downloaded by any modem. I suppose Commodore started the problem by deciding to make Compunet in a way that was only accessible by the Commodore modem. What Micronet have done is to make their Commodore 64 software only available to those with Micronet modems! It is all very well these commercial wars but the loser is always us, the poor consumer. Each side tries to justify their position with, in the case of Micronet, incorrect information being displayed on the network. They suggested that the Commodore modem, and others, could not download untokenised software in CET format. If they had bothered to look at some of the PET software I mentioned in this column some issues previous they would have realised their error. Any way, despite the aggro, there are two points to make。ICPUC will not allow its 64 software to go up on Micronet until we can all download it, not just those with OEL modems. Secondly a program will be going up on Compunet soon which will allow the Commodore modem to download Micronet soft ware!

The other big news about Prestel is that mailbox has gone national and, what is more, it is free. The folklore has it that Prestel deliberately floated rumours of mailbox charges to see what the reaction would be. The reaction was exothermic with the result that the service is without charge. I wonder if this had anything to do with Compunet suspending their charge of 10 p a mailbox during November.

Many issues ago I mentioned there were some PET programs that not many people knew about on pages 70041200-700412024. Please note that these programs are slowly disappearing and they can no longer be guaranteed to work! I guess Micronet have got round to messing these pages up.

I got a very interesting little book recently called 'The Micronet Handbook'. It is written by Barbara Hickford and is part of the

Personal Computer World series of books. So as to avoid favouritism I better mention that I got the book courtesy Commodore User! It is a very easy to read introduction to Micronet, Prestel in general, and Teletext. It describes each service, the costs involved, indexes to pages on each service and a glossary of the technical terms. I found it quite useful and I now know how to send a multi-page mailbox to somebody without forgetting what 1 said on a previous page! Unfortunately I haven't seen the book in the shops, but if you do have a look inside.

Having talked about Prestel at length I better say something about Compunet. The service has now started and some of you are even using it. I have had one comment that perhaps I was a little harsh on the service in the last newsletter but as I told the correspondent, until I can see Compunet again I will not alter my opinion. The general frustration of most users is that it is slower than Prestel. ICPUG have been negotiating with Compunet as to what service we will provide to ICPUG and Compunet members. At the time of writing we have agreed to Compunet/Commodore proposals subject to only a maximum of 30 per cent of ICPUC information going on general view to any Compunet user. We have not yet had the response from Compunet but we do not anticipate problems and expect to be setting up the database very soon. Software that has been provided free on Compunet has been the User to User software (U2U) as well as the viewdata software to access Prestel. A price of 5 pounds was fixed for the latter but, at the time of writing, has not yet been charged. The U2U software allows owners with 64s and Commodore modems to transfer disk files and messages directly over the phone. It does not work with cassette files but apart from that is very good. A problem was found with the initial version in that it did not work over a range greater than 100 miles. The version available by the time you are reading this should have overcome this problem. It did not seem to work with my preproduction 64 either, but not many of you are likely do have one of those. As indicated above the viewdata software is to be updated to allow downloading of Micronet programs and possibly some offline mailbox facility.

Well, that is it for this time. I shall finish off with the list of contacts made this period It is getting longer each time. Welcome to Paul Crossley, John Moult, Michael Arnold, Robin Tomlinson, Robin Leaver, John Hunter, Richard Wilson (a VIC man), Bill Donald, John Stock-Allchurch, T. Harrison-Smith, N. Yule, Mark Smythe, Ivan Drake,

Richard Floyd, Graham Carpenter, Paul Ostling, J. Tanner, John Whitley and Colin Spencer.

I'll be pleased to hear from new communicators but please bear with me. I cannot give instant turnaround these dayso After some weekends it is not unusual to find 10 , or more, mailboxes to answer!

TEACH YOUR GRANDMOTHER 9

You youngsters don't know how lucky you are to have compilers cheaply available to speed up your programs! I can still remember the days when you had to plan your program to speed things up a bit.

Just in case any of you haven't a handy compiler the following techniques will help to push your machine to its limit:
1 Identify the code which is most used. Put heavily used subroutines at the start of the program even if this means GOTOing around them.

2 Loops in the busiest code should be really compact. Forget about style and put as much as you can on each line. Explanatory REPMs can go at the end of the program.

3 If you have a series of tests such as :-
IF ASC(MID\$(CH\$+SP\$,7,1))=77 THEN TY=1
IF ASC(MID\$ $(\mathrm{CH} \$+S P \$, 7,1))=76$ THEN $T Y=2$
IF ASC(MID\$ $(\mathrm{CH} \$+S P \$, 7,1))=49$ THEN $T Y=3$
etc
it is very useful to resolve the complex formulae just once with T=ASC(MID\$(CH\$+SP\$,7,1)) and then simply test T; ie IF $T=77$ THEN $T Y=1$ etc

PLUS 4/C 16 PRELIMINARY MEMORY MAP

The following pages contain the first attempt at a memory map for both the C16 and + 4. It is intended for those who are taking their first delve inside the machines and is certainly not the final product. A more complete and comparative map is already in preparation. These notes should be read in conjunction with Mike Todd's article 'The C16 and Plus 4 - a preliminary look' in the September Newsletter.

ADDRESS NOTES

0000-0001 8 bit I/O port - used mainly for serial bus
0002 Stack search target byte (For)
0003-0004 RENUMBER - new starting line\#
0005-0006 RENUMBER - line increment
0007-0029 As C64
$002 \mathrm{~B}-002 \mathrm{C}$ Start of BASIC text
002D-002E Start of variables - end of BASIC text
002F-0030 Start of arrays
0031-0032 Start of space for strings - end of arrays
0033-0034 Bottom of strings
0035-0036 String pointer
0037-0038 Upper limit of RAM available for BASIC
0039-003A Current line\#
003B-003C TXTPTR for CHRGET
003D-003E Pointer to entry in GOSUB/FOR stack
003F-0040 DATA line\#
0041-0072 As C64 (some locations also used by new commands)
0073-0074 AUTO line increment
0075 Graphics area allocated flag FF if graphics allocated
0076 F-key number; PRINT USING workspace
0077-0078 MIDS= params; F-key length; MONITOR
0079-007B DS\$ descriptor
007C-007D GOSUB/FOR stack pointer
007 E Temp store of colour/luminance/register
007 F Temp store of colour being set during COLOR
$0080 \quad$ Current VOL; current voice; temp during graphics routines
0081 Direct mode flag
0082 DISK - syntax byte; PRINT USING
0083 Graphics mode - B7=MCM B6=split screen B5=graphics

ADDRESS NOTES

0084 Current colour registert
0085 Colour\# 2 - multicolour 1
0086 Colour\# 1 - foreground/character colour (graphics mode)
0087 Screen width ($=40$ for hi-res; $=20$ for multicolour)
0088 \# of lines on screen
0089-008B PAINT flags
008C-008D Pointer to screen RAM for hi-res routines
$008 \mathrm{E}-008 \mathrm{~F}$ SSHAPE
008E-008F Scaling factor for graphics routines

0090-0095 As C64

0096 Count of external ROMs being checked during RESET
0097 \# files OPEN
0098 . Default IN device
0099 Default OUT device
009A MSFLAG to supress messages ($\$ 80$ direct mode, $\$ 00$ in prog)
009B-009C Address of byte currently being SAVEd (IEEE)
009D-009E SAVE end address; addressof IEEE byte being LOADed
009F-00A2 MONITOR
00A3-00A5 TI clock
00A6 EOI received flag
00 A 7 Cassette write - character for output
00 A8 Serial - character received
00A9-00AA Pointer to colour memory during scroll/INS etc.
OOAA Counter during serial input
$00 A B \quad$ Length of filename
$00 A C \quad$ Logical file number
00AD Secondary address
00AE Device \#
00AF-00B0 Start of filename
$00 \mathrm{B1}$ Count of \# of error to be corrected during cassette read
00B2-00B3 SAVE start address
00B4-00B5 LOAD start address
$00 \mathrm{B6}-00 \mathrm{~B} 7$ Pointer to start of cassette buffer
00B8-00B9 Pointer to start of KERNAL vector table
OOBA Flag during CLOSE - prevents CLOSE of $S A=15$ if $B 7=0$
00BA-00BB Address of byte currently being LOADed from cassette
$00 \mathrm{BC}-00 \mathrm{BD}$ Ptr to out put string (=address of byte after JSR)

ADDRESS NOTES

OOBE-OOBF. Address of byte to be read from external ROM
$00 \mathrm{C} 0-00 \mathrm{C} 1$ Start address of screen line during scroll etc.
00 C 2 RVS flag
$00 C 3$ Right hand of screen during screen input
00C4 Cursor line log
00C5 Cursor position log
00C6 Matrix value of key pressed
$00 C 7$ Flag input is from screen
00C8-00C9 Start address of current screen line (character)
00CA Cursor position
00CB Quotes flag $\mathrm{b} 0=1$ if in quotes mode
OOCC Temp store of cursor column during scroll
00CD Current cursor line\#
OOCE Character under cursor; character for output to screen
OOCF INS counter
O0D0-00E8 unused (originally for speech synthesiser \& applications)
O0E9 CIRCLE - segment angle increment
OOEA-00EB Start address of current screen line (colour)
OOEC-00ED Pointer to keyboard decoding table
OOEE Keyboard image from scan
00EF \# chars in keyboard buffer
00FO Halt display flag <>0 to stop screen display (set by CTL-S)
00F1-00F6 MONITOR usage
$00 \mathrm{~F} \quad$ Pass number on cassette read $\mathrm{b} 7=1$ first time $\mathrm{b} 7=0$ on 2nd
$00 F 8$ Cassette block type ID
00 F9 \quad HSD mode ($\mathrm{b} 7=0 / \mathrm{p} \quad \mathrm{b} 6=\mathrm{i} / \mathrm{p}$) \& device\#
00FA Temp .X store during STOP key check
00FB Current ROM bank\#
00FC RS232 X-ON flag $=17$ to operate ($=$ CTL-S)
00FD RS232 X-OFF flag $=19$ to operate ($=$ CTL-Q)
00 FE Temp store for cursor line\# during scroll
0100-010F Number to ASCII building area
0110-1112 .A/.Y/.X save during CHROUT
0113-0122 Colour code conversion table (inc luminance)

ADDRESS NOTES

0200-0258 Input buffer
0259-025A Line\# after STOP
025B-025C TXTPTR after STOP
025D-02AC DISK command workspace
02AD-02B0 Pixel cursor - 02AD/02AE $=X \quad 02 A F / 02 B 0=Y$
02B1-02E3 Table of graphics co-ordinates and misc workspace
02E4 Page\# of character generator - normally \$D0
02E6 Scaling on/off flag $=0$ if off $\langle>0$ if on
02 E7 Flag to plot point double width (always 0)
02E8 BOX Flag to plot point double width (for PAINT option)
02E9 Bit to be set suring plot point subroutine
02EA CHAR - \# of chars in string
02EB TRACE - on=FF of $=00$
02EC DIRECTORY - counter
02ED-02EE DIRECTORY - \# blocks in file entry (=line\# from PRG)
02EF Used during co-ordinate scaling
02F0 Temp storage of pointer to graphics variable
02 F 1 Flag relative co-ordinates ($\mathrm{B} 7=1$ if + or - preceded co-ord)
02F2-02F3 FLPT to INT vector
$02 \mathrm{~F} 4-02 \mathrm{~F}$ INT to FLPT vector
$02 \mathrm{~F} 6-02 \mathrm{FD}$ unused
0300-0301 =8686 Error vector
0302-0303 =8712 READY vector
0304-0305 $=8956$ Crunch routine
0306-0307 $=8$ B6E LIST
0308-0309 =8BD6 Main execution loop
$030 \mathrm{~A}-030 \mathrm{~B}=9417$ Arithmetic element evaluation
030C-030D $=896 \mathrm{~A}$ Crunch new keyword (after escape token)
$030 \mathrm{E}-030 \mathrm{~F}=9 \mathrm{~B} 88$ List new keyword (after escape token)
0310-0311 $=8$ C8B Execute new keyword (after escape token)

```
ADDRESS NOTES
0312-0313 =CE42 Extra IRQ intercept point
0314-0315 =CEOE Main IRQ vector
0316-0317 =F44C BRK vector
0318-0319 =EF53 OPEN
031A-031B =EE5D CLOSE
031C-031D =ED18 CHKIN
031E-031F =ED60 CHKOUT
0320-0321 =EFOC CLRCHN
0322-0323 =EBE8 BASIN
0324-0325 =EC4B BASOUT
0326-0327 =F265 STOP
0328-0329 =EBD9 GETIN
032A-032B =EF08 CLALL
032C-032D =F44C (BRK vector - unused)
032E-032F =F04A LOAD
0330-0331 =F1A4 SAVE
0333-03F2 Cassette buffer
03F3-03F4 Cassette write - # bytes to write (2's complement)
03F5-03F6 Cassette read - # bytes to read (2's complement)
03F7-0436 RS232 input buffer
0437-0472 Cassette read error log
0473-0485 CHRGET (0479=CHRGOT) subroutine
0494-04E6 LDA (xx),Y subroutines (see last issue)
04E7-04EA PUDEF - fill symbols - space , .$
04EB-04EC INSTR - pointer to 1st string descriptor
04ED-04EE INSTR - pointer to 2nd string descriptor
04EF ERR - # of error that occured
04FO-04F1 ERRL - line# where error occured
04F2-04F3 TRAP - line# to execute on error (04F3=FF if off)
04F4 TRAP - state of TRAP prior to RESUME
04F5-04F6 ERR - pointer (from 025B/025C)
04F7 Stack pointer prior to command - used for error trap
04FB-04F9 DO - TXTPTR to start of loop
04FA-04FB DO - Line# of start of loop
04FC-04FD SOUND - LO timing bytes for voices 1/2
04FE-04FF SOUND - HI timing bytes for voices 1/2
```

```
ADDRESS NOTES
0500-0502 USR vector
0503-0507 RND seed
0508 Reset flag =$A5 after RAM pointers set
0509-0512 Logical file number table
0513-051C Device# table
051D-0526 Secondary address table
0527-0530 Keyboard buffer
0531-0532 Bottom of RAM (normally $1000)
0533-0534 Top of RAM (normally +4=$FD00 C16=$3FF6)
0535 Serial time out flag (set but never checked)
0536 unused
0537 Cassette write - set to 0 on OPEN but never accessed
0538 unused
0539 Cassette buffer pointer
053A unused
053B Current character colour - for text mode
053C Current character flash mode (ON:b7=1 OFF:b7=0)
053D unused
053E Page of screen RAM - set but never accessed
053F Max size of keyboard buffer (set to $0A)
0540 Keyboard repeat flag
0 5 4 1 ~ R e p e a t ~ s p e e d
0542 Delay before repeat
0543 Shift/CBM/CTL key flags
0544 Screen flip countdown - used to prevent bounce
0545-0546 Address of key decoding routine (=DB7A)
0547 Screen flip lockout
0548 Auto scroll down flag
0549 Used in screen routines (store of cursor log)
054A Set to $0A on screen reset but never accessed
054B-055C MONITOR
055D # chars in current F-key
055E Pointer to current F-key definition
055F-0566 F-key lengths (0-8)
0567-05E6 F-key definitions
```

05E7-05EB High speed disk - workspace
05EC-05FF External ROM identities - $0=$ no ROM/ $1=$ init immediately $05 \mathrm{~F}=05 \mathrm{~F} 1$ External ROM interrupt vector
05F2-05F4 .A/.X/.SR - saved during external ROM interrupt service $05 \mathrm{~F}-06 \mathrm{~EB}$ unused

06EC-07AF GOSUB/FOR stack
07B0 Cassette read - =FF if reading to buffer
07B1 Cassette byte parity
07B2 Pointer to filename during transfer into buffer
07B3 Pointer to buffer during filename transfer
07B4 unused
07B5 Bit count during cassette read
07B6 Pass $1 \& 2$ error counters - points into error table
07B7 Pass 1 error count (set from 07B6 after 1st pass)
07B8-07BD Cassette read timing constant (for FF02/FF03)
07BE Temp stack pointer store during cassette read
07BF Temp stack pointer store at start of building byte
07C0-07C1 Start address of cassette read
$07 \mathrm{C} 2-07 \mathrm{C} 3$ Number of bytes to be read (2's complement)
07C4 Error flag during cassette read pass 2
07C5 Counter for start of read syncronisation
07C6 Counter to test succesful syncronisation
07 C 7 Temp store for serial char during VERIFY
07C8-07C9 Cassette write timing constant (for FFO2/FF03)
07CA-07CB.Y/X temp store during bit write
07CC Flag used during byte building
07CD RS232 byte for oútput
07CE RS232 character waiting ($b 7=1$ if waiting)
07CF RS232 X-ON/X-OFF to be TX'd
07D0 RS232 flag to indicate X-ON/X-OFF to be transmitted 07D1 RS232 input buffer pointer - points to last char entered
07D2 RS232 input buffer pointer - points to last char read
07D3 RS232 count of number of characters ininput buffer

ADDRESS NOTES

07 D 4 RS232 status
07D5 RS232 character read from FD00
$07 \mathrm{D6}$ RS232 X-ON/X-OFF flag - =FF tx held until X-ON received
07D7 RS232 flag input buffer not receiving (if X-OFF was sent)
07D8 RS232 flag RS232 is active
07D9-07E4 LDA (\$xx), Y where (\$xx) is held in \$07DF
07E5 Screen window bottom - set by ESC-B
07 E 6 Screen window top - set by ESC-T
07E Screen window left - set by ESC-T
07E8 Screen window right - set by ESC-B
07 E9 Screen scroll flag - set by ESC-M cleared by ESC-L
07EA Auto insert flag - set by ESC-A cleared by ESC-C
07EB Last character printed on screen (to identify ESC sequence)
07EC Force scroll up - use during ESC-D (delete line)
07ED Current 'cursor' colour
07EE-07F1 Screen wrap around table (bit mapped)
07F2-07F5 .A/.X/.Y/.SR used by SYS
07 F 6 Last key value pressed (for repeat)
07F7 List pause disable flag (disables CTL-S if <>0)
07F8 ROM/RAM flag for monitor ($b 7=0$:read ROM $b 7=1$:read RAM)
07F9 Colour code table flag ($\mathrm{b} 7=1$:codes from $\$ \mathrm{E} 143 \quad \mathrm{~b} 7=0: \$ 0113$)
07FA Raster control byte ($=\% 00000100$)
07FB Page number of hi-res screen ($=\$ 18$)

	Normal
$0800-0 B F F$	TEXT screen colour RAM
$0000-0$ FFF	TEXT screen character RAM
$1000-$ FCFF	BASIC RAM area ($1000-3$ FFF on C16)

GRAPHICS mode
0800-0BFF TEXT screen colour RAM (+4 and C16)
$0 \mathrm{C} 00-0 \mathrm{FFF}$ TEXT screen cháracter RAM (+4 and C16)
1000-17FF UNUSED (used in C16 for BASIC RAM)
1800-1BFF Hi-res screen (luminance?) (+4 and C16)
1C00-1FFF Hi-res screen (colours?) (+4 and C16)
2000-3FFF Hi-res screen bit mapping area (+4 and C16)
4000-FCFF BASIC RAM area (+4 only)

ADDRESS NOTES

800A/8019	Warm/cold start routines
8155	Variety of LDA (xx), Y routines
818E	Start of keywords table
8470	Start of error messages
8703	READY entry
8953	Crunch tokens
8A79	NEW
8AFF	LIST
8BD3	Main statement execution loop
A954	Garbage collection
AEF7	PRINT USING
B42B	TRAP
B729	KEY
BC20	ASCII names: FRED B TERRY R MIKE I
B8D1	Start of graphics commands
C8BC	Start of disk commands
CD74	BASIC patches area
CD89	Encoded names: F BOWEN J COOPER B HERD T RYAN
CDAB	Routine to print encoded names
CEO0	Main IRQ service routine
CE60	Split screen
CECD	SOUND interrupt handler
CEFO	Update TI\$
D000-D7FF	Character generator
D802	Screen address pointers
D88B	Clear screen
DC49	ASCII character to screen
DE48	ESC sequence handler
E01E	Keyboard decoding
E153	Serial routines
E319	Cassette routines
EA5B	RS232 routines
EB58	KERNAL error messages

ADDRESS
 NOTES

EC96/ECE6 Input/output from high speed disk
EDA9 Check if high speed disk interface is present
F30B Initialise I/O
F352 KERNAL initialise routine
F445 MONITOR
FC1E Hunt \& log external ROMs - initialise if ID=1
FCB3 Main IRQ entry
FCF1 Execute code in external ROM
FCF4 Initialise all ROMs found
FCF7 Get a byte from an external ROM
FCFA Handle external ROM interrupt routine
FCFD Resume KERNAL interruptFD00 6551 for RS232
$\begin{array}{ll}\text { FD10 } & \text { Parallel I/O (also FD20 \& FD30) } \\ \text { FDD0 } & \text { External ROM/cartridge select }\end{array}$
FECO/FEFF High speed disk - device\# 9/8
FFOO TED chip control registers
FFOO/5 Timer 1-2-3
FRO6 B5=bit map mode B4=screen off
FF07 B4=multi colour mode
FF08 Keyboard column input
FF09/A Interrupt flag and enable
FFOB Raster count
FFOC/D Position of cursor
FFOE/11 Sound registers
FF12 Bit mapped memory address
FF13 Character generator address
FF14 Screen memory base
FF15/9 Screen colours
FF1C/D Raster line for interrupt
FF3E Select ROM
FF3F Select RAM
FF49 New vectors for $+4 / \mathrm{C} 16$
FF80 KERNAL version number
FF81 KERNAL vector table
FFF6 Initial RESET point
FFFC/F RESET vector (FFF6) and IRQ vector (FCB3)

SEMD SAE FOH lIREE AICIPITAI IMAP

 AIOTHER CREAT ORIGINAL: FROML LIAMASOFT

$£ 5.50$
£7.50

PLEASE SEND 50p P8P WITH EACH ORDEA

SUPERBASE CORNER

edited by Hugh de Glanville
Well, here we are with our second issue of this new feature, possibly still slightly disorganized for reasons not unconnected with the Editor's physical state (see Notebook).

Recently both a reader and one of the computer journals made a very essential point about databases like Superbase, which perhaps puts what we are trying to do into perspective. It has to be realised that when you buy Superbase, you are not really just buying a data/file management system, you are buying a high-level language which has thrown in with it all the mechanics of managing data and files. You can at an elementary level just make mechanical use of its data management, or you can, as obviously many of us want to do, exploit it for really quite complex purposes.

The way this feature seems to be shaping is that we shall usually have some major section on programming from PS sources (Brian Leighfield and/or Tom Cranstoun); we shall have their help in answering vexing questions; we shall have readers' comments and queries; and for the moment the whole will be wrapped up in and accompanied by my comments and observations from my own fairly busy, if not very sophisticated, use of SB for business purposes. So this month, after my opening remarks, we have answers to one reader's several queries, and then, at rather more length than we expect to have usually, an explanation of how the standard SB Labels program works, as an introduction to the higher forms of programming. A particularly interesting section of this is where it goes into the somewhat perplexing "do" command: you are strongly encouraged to fire up your computer and work through the examples given there as you read the section, and not just to read through the code.

Incidentally, I was wrong in crediting Brian Leighfield with authorship of the SB Applications programs in the September 'Shop Window'. Any credit due for these goes to Roger Lamb, G Rook, and Dr Bruce Hunt.

The SB self-destruct function
Has anyone else run into the situation in which SB clearly instructs one to destroy one's own data disk?! This can arise if you are working
with a database in drive 1 of a double drive and you decide to format a new disk. Normally one would be doing this in drive 0 , and SB tells you to put the blank disk in drive 0 and duly warns you that anything on the disk will be lost. What it actually does is to format the disk in the drive in which it is currently working, so if this happens to be drive 1, although it says 'put the blank disk in drive 0 ', it will then go ahead and format the disk in drive 1 -your database if you don't catch it in time by noticing, for example, that the wrong drive light has come on. Not a situation likely to crop up very often, but just the sort of 'funny' that I specialize in stumbling on.

Date formats

Is anyone perplexed by the fact that dates sometimes come up in US and sometimes in UK format? The default as the standard program loads is the US format, eog. NOV3084, but as soon as you enter a date in the other format, all the dates flip to that form. If you would like the program always to use the UK format from the word go, you can simply insert a line in your start program saying 'date "OOJANOO" and then all your dates will be in UK form from the outset.

Timing operations
Talking of dates and times, although I have not seen it mentioned anywhere in the manual, ti\$ is available within Superbase, and it is very easy to add timing functions into programs. In fact some programmers seem to take an absolute delight in doing so, and I have a couple of programs that helpful friends have written for me that simply cover the screen with details of how many records they have processed in how many minutes and seconds, how long each cycle is taking, how long since what-have-you started - almost everything except how long before the next cup of coffee will arrive.

To take a very simple example, the following would time a 'sort'. I give the program because it illustrates the interconversion of str\$ and VAL involved in the operation, which may help other beginners.
$10 \mathrm{sts}=\mathrm{tis}$: rem note program start time
20 file "x":sort all on [key][text1]
$30 \mathrm{ft} \$=\mathrm{ti}$: rem take finishing time
40 t=val(ft\$)-val(st\$):t\$=str\$(t): rem work out interval as a string
50 display @0@10,10 "Time taken $=$ " left $\$(\mathrm{t} \$, 2)$ " hours, and " mid\$($\$ \$, 3,2$) " minutes": wait:menu

Count catching

A number of users wish that SB's counts were not so evanescent, apart from being usually one ahead of themselves, I have made close enquiry of the experts as to whether there is any way in which those fleeting figures up in the top right-hand corner of the screen could be 'fixed' in any useful way, but the answer is a definite No. It seems there really is no way SB's own internal counts can be dumped at the end of an operation. It is of course open to any user to slip a counter into his own program and display the result at the end, but we cannot get our hands on those elusive right-hand-corner figures, nohow.

Field numbers
For any program that makes frequent use of field names, or needs to store them in an array, it is convenient to have numeral field names. At the same time, explanatory text is more use on the screen display. The fact that SB reads its field designations like an oil sheikh (is there any significance in that, I wonder?), from right to left, and stops at the first word space it meets, makes it very easy to combine the best of the two worlds. Thus
key $1\left[\begin{array}{ll}{[} & \\ \text { name } 2[& \\ \text { addr } 3[& \end{array}\right]$
gives us meaningful field names on screen, but as far as SB itself is concerned the field names are $1,2,3, \& c_{0}$ Note that although these are 'numbers' they are still string variables at this stage, and for numerical handling in a program they will have to be converted to numeric variables by the VAL function, and later converted back again, remembering to chop off BASIC's leading space for the minus sign. So if we have a field numbered ' k ' (actually $1 \$$), to turn it into a numeric variable

$$
k=\operatorname{val}(k \$)
$$

and when we want to convert back again

$$
k \$=\operatorname{mid} \$(\operatorname{str} \$(k), 2)
$$

That is enough low-level comment from your editor. Let us now proceed to the genuine stuff from more erudite pens. And as we tum the page, this Column wishes all Superbasers fun over Christmas with the "do" function, and the best of programming in 1985.

More or less Superbase Corner's first query customer is Ifan Payne of Clamorgan who sent in two programs he had written for Superbase himself and asked several interesting questions. He finds Superbase an 'excellent but frustrating program; frustrating in that there are so many things that one knows could be done with it but so little guidance is offered The first thing that could be done is to convince PS to create an index for its Manuals.

Well, I am glad to say that Superbase 64 Manuals now have an index, and one is being prepared for the $96 / 700$ Manuals Space does not allow giving both Ifan's programs, but Tom C has used one of them, with slight modification which we are sure will be forgiven, to demonstrate the answer to one of the questions asked.

The questions are (1) How does one transfer 40 -column SB64 files from 1541 to 8250 disks? (2) How does one get the 6400 printer to underline with Superbase? (3) How does one arrange automatic page numbering for 'reports', preferably within a standard page heading?
(1) 1541 to 8250 transfer is impossible directly, because the DOS are not compatible, but sequential files can be copied across with Jim Butterfield's "Copy all" program or a similar utility from the ICPUG library (for either 64 or 96 systems). As your 64 is being used with a DAMS interface, a 4040 will have to be used to read the 1541 disks, as the DAMS does not allow simultaneous access to the IEEE and serial buses. The whole procedure will be as follows.

All Superbase files except the Database itself are sequential files (so are Easyscript files for that matter). To transfer Database files you will need to:-
1: Take a hard copy of the STATUS of each database file.
2: Export all the database files.
3. Quit Superbase and load "Copy all"
4. Transfer the sequential files to a newly formatted disk on the 8250.

WARNING: do not try to copy the database.
Also do not copy the file definitions unless you want them for working a $64 / 8250$ system as well. If you do this, onto the same disk, then rename them so that they do not interfere with your 8000 database.
5. Load up Superbase on the 8000 series machine and create a database.
6. Enter the original file names. The message "File does not exist: create it?" will be displayed in response to each name. Answer ' y ' to this prompt and then, unless you did copy the file defs across and not
rename them (in which case you would be returned to the main menu), you will be invited to create new 80 -column formats for your files. 7. Import the data files.
(If you are lazy, like the Editor, it is possible [but not really recommended by Tom] to take 64 file definitions across into an 8000 database, and then call up FORMAT and rearrange them on screen. The reverse is not possible.)
(2) To underline with the 6400 printer from Superbase, set the dipswitches to ASC and use the following routine:
$10 u 1 \$=\operatorname{ch} \$(27)+" E ": u 0 \$=\operatorname{chr} \$(27)+" R^{n}$
20 print "Here is the";u1\$;"Underline Example"; $\mathbf{u 0 \$; " f o r ~ y o u r ~ 6 4 0 0 " ~}$
(3) Tom's answer to how to include automatic page numbering in a report is given in the following modified version of Ifan's own program for automatic line numbering within a report.

11 rem based on a program from Ifan Paine
$20 \mathrm{pn}=1: \mathrm{rem}$ beginning page number
$30 \ln =1$:rem count of lines printed
40 i=1.01:rem item counter
50 ep=11:rem end of page line (+1)
100 display @20,1@-"REPORT TITLE" $\& 3,0 ;$ pn@-:-rem $x x, 1$ forces new page if needed
200 display @ 20,3 "SUBTITLE"
300 display @20,5"LIST HEADING"
400 display @20,7:rem position print head away from titles
600 select next:rem use select from "listname" if required
700 display i"TEXT ITEMS":rem use meaningful field names/ variables here
$800 i=i+0.01$:rem increment item counter
900 eof menu:rem use eol menu if using a list
$950 \ln =1 n+1$:if $\ln =e p t h e n \quad p n=p n+1: \ln =1$:goto 100 :rem inc line count 1000 goto 600 :rem repeat until finished.

Now on to our programming article, this month's piece de resistance.

The labels program listed below can be found on every Superbase program disk Therefore for anyone developing an interest in programming with Superbase it provides a valuable insight into use of the database. In this article we shall have a look at the labels program in order to see how it works and how it may be amended. In a following article the theme will be continued with a look at some further amendments and alternative methods of dealing with "The labels problem". The article is also, we hope, going to generate some feedback and we also hope that other Superbase users will contribute their thoughts on Superbase programming.

Mick Ryan has offered some very interesting label routines for listing and comment, and we plan to publish these later. The present article is really an attempt to ensure that we are all on a common footing by explaining how the program works. The article is has turned out rather longer than we hoped but we felt it necessary to produce sufficient material in the first main piece to provide a common basis for developing the tone of the users' corner. For the sake of space and sanity, a knowledge of Commodore Basic is assumed.

Finally, a message from one of the program authors. Tom Cranstoun has asked me to point out that the labels program was written in a hurry and is not meant to represent a definitive programming style. Well, this may be true for those competent at the heady levels that Tom operates on: for the rest of us who still are learning to program it represents an example of crisp technique. Over 50000 users have it on their disks and a lot of them must be using it without any bother, or Precision Software Technical Support would be inundated with queries about it, whereas the vast majority of enquiries about the program are from those new users who do not seem to recognize that as it is a Superbase program, it only works within Superbase and cannot be run on its own.

First rules

The program assumes (1) that the user has made hard copy of (or committed to memory) the names of the fields in the file definition of database file he intends to print labels from;
(2) that the lengths of these fields, in the print size chosen, will fit into the label format;
(3) that if a select list is to be used, this has already been created and its name remembered.

If the above information has been entered correctly then the program will spin away and create your labels for you for very little effort. However it was only designed to be a basic, 'get-you-going', routine, and there are several ways in which one might want to amend it.

For instance, as it stands, the program requires an addressee's title, forename, and surname all to be available in one field, whereas it is often much more convenient from the database point of view to have the surname in a field by itself as key field, so that the database keeps itself automatically in surname alpha order, and records can be selected by surname. The title and forenames then have to be kept in other (text) fields. On this basis, the label program needs to be able to concatenate these two or three fields into one on the first line of the label.

The existing program provides for printing up to four labels across the page, for label widths of between 19 and 36 characters, and between 2 and 12 lines per label. These ranges will cater for most label operations. They can be extended it should be noted that care must be taken not to run out of memory.

The present article will attempt to provide you with sufficient information to make modifications in the above areas. In future articles we hope to be able to deal with the following amenities as well.

Some labels require a serial number to be printed on them (e.g. for manufactured goods), or a despatch number, or a date may be wanted on the label.

The present program prints one label for each record selected from the database file, selecting the records either in sequence from the first record in the file to the last, or from a previously created select list. Sometimes it is useful to print more than one label for each record.

Also as it stands it will not allow for the generation of half line feeds and other exotica necessary for those who have the misfortune to need labels printed with odd line increments.

THE PROGRAM

The first section of the program sets up the system parameters and names the string variables for screen control and error message display. To avoid unnecessary repetition of lengthy display statements, lines used more than once in the program are placed in variables to be called at appropriate points.

100 rem Label program, Precision Software, 1983
110 display:across:Imarg:rmarg:space:cont 1
150 err\$=chr\$(7)+"Incorrect Response, Retry"
$160 \mathrm{cl} \$=" d i s p l a y$ chr $\$(147) @ 1,2^{2}+\mathrm{chr} \$(34)+" \quad$ Superbase Label
Program"+chr\$(13)
$170 \mathrm{cl} \mathrm{\$=c\mid} \mathrm{\$+"}$ Precision Software Ltd. (c) 1983"
180 catalog:do "display@0"+mid\$(cl\$,18)+"
The command "catalog" on line 180 will display the database catalog on the screen to allow the user to select the file to print from in response to the prompt on the next line.

When run the program will display the catalog in exactly the same way as it is displayed. when the "FILE" option is selected from Superbase menu 2, except that the prompt "Enter file name" does not appear/

Also on line 180 is the first use of the high-level command "do" in this program.
do "display@0"+mid\$(cl\$,18)+"

In order to understand the labels program we need to divert here for a moment and take a close look at the operation of the "do" command. If you already understand what the command does perhaps you can afford to ignore the next section.

Using the DO command
Load up Superbase and enter the following program:
10 a $\$=$ "fred"
$20 \mathrm{~d} \$=$ "display@1,6;chr\$(34)+a\$+chr\$(34)
30 display@0@1,2;a\$;@1,4;d\$
40 do d\$
50 wait
When run this program will demonstrate the action of the "do" command on the text strings, though this would be a very trivial way to use it, not worth bothering to do. One slightly more interesting example is the transposing of the contents of a string variable (e.g. a\$) which is itself a variable name (e.g. b\$) to the data string which has been assigned to b\$。
$10 \mathrm{~b} \$=$ "fred"
$20 \mathrm{a} \$=\mathrm{b} \$ \mathrm{~F}$ "
30 do "c $\$="+a \$$
40 display @1,6;b\$;@1,8;a\$;@1,10;c\$"ju1

The value of this is that a field name can be held in memory in the form of a string variable.
$10 \mathrm{a} \$=$ "[name]"
Notice that the field name is put in quotes. The string variable therefore consists of the name of a field, not its contentso When one wishes to get at the data actually held in that field of a current record it is necessary to transpose the statement by a "do" command.

For the purposes of the next exercise, create a test file with a field in it called "name".

10 display @0@1,4"Enter the field name : ";@0:ask\&16@25,4;a\$
20 if left $\$(a \$, 1)>"\left["\right.$ or left $\$(a \$, 1)<"\left[" t h e n ~ a \$=\left[{ }^{2}+a \$\right.\right.$
30 if right $\$(a \$, 1)>"]$ " or right $\$(a \$, 1)<"] " t h e n ~ a \$=a \$+"] "$
40 display@0@1, $6^{" 1} \mathrm{a} \$==^{\prime} ; \mathrm{a} \$$
50 do"a\$="+a\$
60 display @0@1,8;a\$:
Now you should have some inkling as to the use of the "do" command, and we can go back to the labels program.

The section of the program between lines 190 and 230 is concerned with setting global parameters for the operation.

190 ask \&10"File To Print From";f\$:file $\uparrow \$: s e l e c t ~ f: d o ~ c l \$ ~$
This line asks for the name of the file (remember the catalog is currently being displayed). The file is then selected and initialised by selecting the first record.

200 display @1,6"Use a Select list, (y/n) : n"@0:ask \&1@28,6;a\$:do cl\$ 210 if $a \$=" y$ "or $a \$=" Y$ "then $s l=1$
220 if $\mathrm{sl}=1$ then display @0:ask @1,6"Enter Select List name :";sl\$: do cl\$
230 if $s l=1$ then select from sl\$
The numeric variable "sl" is used as a "flag" which indicates whether a select list will be used. If the option has been chosen ($a \$=y$) $s l$ is set to 1. A new display (line 220) allows the placing of the select
list name into the variable assigned (si\$) and the program selects the first record from the list.

We are now in a position to set up the print parameters for the label run.

300 display @1,6"How Many Labels (1-4) Across Page : 1"@0: ask \&1@37,6;n:do cl\$
310 if $n>4$ or $n<1$ then display @1,8@+err\$@0:goto 300
320 display @1,6"Enter Label Width (>19 charso) : 19"@0: ask 82@35,6;w: do cl\$
$325 \mathrm{I} s=w$:if $\mathrm{w}>36$ then $\mathrm{I}=36$
330 if $w<19$ or $w=n>254$ then display @1,8@+err\$@0:goto 320
340 display @1,6"Enter Start Column : 1"@:ask \&2@22,6;s:do cl\$
350 if $\mathrm{s}<1$ then display err\$@0:goto 340
360 display @1, $6^{\text {" }}$ Enter No of Lines Between Labels : 9"@:ask \&2@36,6;l: do cl\$
370 if K 2or $\mid>12$ then display @1,8@+err\$@0:goto 360
The above section is simply concerned with getting the numeric data that governs the print format. By the end of execution of line 370 these system variables have been assigned:
n : the number of labels across the page
w : the number of spaces between the first character position of one label and the next on the same row
Is: this is a control variable to draw the label on the screen
s : the first column position to be printed
I: the number of lines from the top line of one row of labels to the top line of the next rwo.

Experienced users will recognise that if they want to hard-code these values into the system they can simply remove lines 310 to 378 and substitute one line of assignment statements for them, e.g.
$300 n=1: w=35: s=40: \mid=12:$ rem print one label across, 35 characters wide 310 rem No of lines between labels $=12$. Start print at column 40

Providing you always use the same label roll and the same position on the printer platen, this can save much tedious repeat entering.

The arrays
$300 \operatorname{dim} 1 \$(n, I), f \$(1)$
$1 \$(n, l)$ is used to hold the data to be printed. $f \$(1)$ will contain the field names (complete with square brackets), or a symbol to indicate that nothing is to be printed on that line.

Lines 400-490 generate the screen display defining the field layout for the label print. Keyboard entry fills the array $\$ \(i) with field names; or asterisks to signify a blank line is to be printed.

```
400 display @1,8"+left$(" ",ls)+" "
420 for i=1to l:display @0@1,8+i" ";@ls+2" "
4 3 0 \text { display @0@1,6"Enter Field Name For Line";\&2,0i}
440 ask &14@4,8+i;f$(i)
450 if left$(f$(i),1)<>"["then f$(i)="["+$$(i)
460 if right$(f$(i),1)<>"]"then f$(i)={$(i)+"]"
465 if f$(i)="["]"then 470
466 check $$(i):display @0@1,6"Incorrect name, re-enter ":goto 440
470 display @0@1,8+i;" "+f$(i)
480 next:u$=left$("
    ",ls)
490 display @0@1,9+|"+u$+" "
```

If one wishes to hard-code this section to avoid keyboard entry then these lines could be replaced by defining $\mathrm{f} \$(\mathrm{i})$ for each line and removing all the other lines between 400 and 500 .

```
\(440 \mathrm{f} \$(1)=\) [name]
\(450 \mathrm{f} \mathrm{\$}(2)=\) add1]:f\$(3)=[add2]:f\$(4)=[town]
\(460 \mathrm{f} \$(6)=\) [county]: \(\mathrm{f} \$(7)=\) [code]
\(470 \mathrm{f} \$(8)=\) "" ": \(f \$(9)=\) "\#"
480 rem no of lines between labels is set to 9
```

Of course the value entered as 1 should also be set to 9 in this example.

If one wishes to print more than one field on a line then this is where the program can be amended.

410 asechr $\$(34)+" \&[a p p] "+c h r \$(34)+"+"$

420 a $\$=a \$+\operatorname{ch} \$(34)+$ " $\&[$ fname $]$ " + chr $\$(34)+"+"$
$430 \mathrm{a} \$=\mathrm{a} \$+\mathrm{chr} \$(34)+" \&[$ Iname] $"+\operatorname{chr} \$(34)$
440 do " $\mathrm{f} \$(1)="+\mathrm{a} \$$
The example above will allow for the concatenation of three fields with truncation applied to each field to remove trailing spaces.

The final section of the program is concerned with selecting records and loading the array $\$(n, l)$ with the contents of the data fields according to the label layout specified in the array $\$ \(1), the entire contents of each label for one row being loaded into the array $\mathbb{I}(n, l)$ prior to printing. Then the row of labels is printed. The program checks to see if any more records are in the file or in the chosen select list. If more records are to be printed the program loops back to load the array with the next set of records.

500 display @0@1,6"Label Printing in Progress Please Wait"
510 tlen I:plen I:print @0;
$520 r=n^{\prime \prime}(w+1)$:if $r>80$ then rmarg r
These lines initialise the printer and set the parameters of paper and text length to equal the number of lines between labels. The right margin only needs to be set if the print width will be greater than 80 characters (if that is the current r margin setting).

```
530 Imarg s:for i=1to n:for j=1to |
540 if f$(j)="["]"then l$(i,j)=" ":goto 560
550 do "l$(i,j)="+f$(j)
560 next:if sl=1 then select from sl$:eol select l:select n:sl=0
570 if sl=0then select n
580 q=q+1:next
```

Lines 530 to 580 load the array $1 \$(n, l)$: the first record was selected earlier in the program. The first record's fields are the first items to be loaded within the inner loop (forj=1tol). If an empty line is to be printed then a null string is placed in the array (line 540). The next record is then selected from the list if $s=1$ or from the file if $s l=0$. The outer loop then takes over to repeat the operation for the next label in the group. When j reaches n the array is full and the program continues to line 590.

The print routine.

```
590 for i=1 to l:for j=1 to n
600x=(j-1)"(w+1)+1:print &w@x;|$(j,i);:next:next
2000 eof print " ":display:across:Imarg:rmarg:space:menu
2010 Imarg:display @0@1,5&3,0q"Labels have been Processed":goto 530
```

Once again two nests of for-next loops are used, this time to print the array. The inner loop now executes the print command on the row, and the outer loop moves the print forwards to the array element for the next line. The print head simply prints the row on the next available line. Notice that the print commands are formatted along the row by using a sliding value for the column position x. The formula for determining the column position of the left margin of each label can be explained as follows.

$$
x=(j-1)^{m}(w-1)+1
$$

Where $w=$ the number of character positions from column 1 of first label in row to column 1 of next label in row, and j is an integer between 1 and n that at any time gives the label number across the page from 1 to n. As the first position to be used will be 0 , then the first value of j is decremented. The value $(j-1)$ is then multiplied by the value $(w-1)$ which is the no of characters between labels less a decrement of 1 to balance the -1 used in the first value ($j-1$).

Finally the value 1 is added to the equation to move the printer head on to the position it will print the first character of the next label on.

After printing the contents of the array $\mathbb{\$}(\mathrm{n}, \mathrm{l})$ the program emerges from the outer loop and checks for an end of file. Note that it does not need to check for an end of list, as if one is detected at line 560 then the program executes a select last followed by a select next to cause an end of file. If "End of file" is false then the program loops back to line 530 to load the array with the next set of records. If "End of file" is true then the print head is cleared, output reset to display, and margins and line feed defaults reset. Control is passed back to the menu system.

After reading all this I hope you are still awake: no doubt parts of the exposition are too simple for some and too complex for others, but I hope no one is actually more confused than when he started.

CHRISTMAS IS COMING . . .

What would you like to find in your Xmas stocking this year? An 8296D maybe, or just a printer or disk drive to give your system the finishing touch! To give you a hand with stocking fillers (for the kids!), Paul Jay, author of Commodore's "Faceache" and "Rolf Harris Picture Builder", has perused briefly a selection of games and a couple of graphics utilities for the 64. Take it away Paul . . .

Micro Power Ltd of Leeds have produced four new games;
SWOOP
This is a very good version of the Galaxion type game, where animated birds swoop down at your base and you have to shoot them down. If you like the old Space Invaders type of game, then this is a good variation.
FELIX IN THE FACTORY
Ladders and conveyor belts, a giant rat, and Cremlins. You have to run about collecting things. It's all been seen before, and has been done better elsewhere.
CYBERTRON MISSION
Electrified walls, 64 different rooms to explore, things to shoot and things to avoid. My previous comment applies.
GHOULS
This is a better one, though still not much original about it. You have to move a Pac-man type character to collect the "power jewels". A game of jumping onto platforms and avoiding the nasties.

Next three games from Quicksilva and again a mixed bunch;
STRONTIUM DOG AND AND THE DEATH GAUNTLET
This is just a terrible game. You move your man, Johnny Alpha, from left to right, avoiding a load of stuff moving from right to left! I was particularly annoyed with this game, as apart from being a computer nut, I collect comics, and this character is one of my favourites. ANT ATTACK
Most of you will have seen this game on the Spectrum (wash my mouth out with soap and water) computer. It is probably the best game, as far as graphics go, available for that machine. It has been faithfully reproduced for the 64. The objective is to rescue the Damsel (or if you are a damsel, the helpless Prince), who is in a spot of bother with a lot of giant ants. The 3-D graphics are superb, though the controls take a bit of getting used to. Buy it!

SEE-SAW

This is the best game I have seen in a long time. For once, as far as I know, it is totally original in concept. You are confronted with a view of a castle, the objective is to scale the wall using a see-saw! However there are bricks being dropped over the wall which you have to slide along the see-saw so that momentum will carry you up. Nasties are trying to catch you and yiu have to use your brains to figure out the best positioning for the bricks. It's a hard game to describe, but a great one to play.

Finally a game from Alligata of Sheffield ROCKET ROGER
Fly Roger through caverns collecting crystals. This game was demonstrated to me by the author, and he made it seem so easy, until I tried it for myself! The graphics are very good and the obstacles very difficult to get around. There is a huge playing area, but if you enjoy a challenge, then this is the best game of its type I have seen.

The utilities are both from Mirrorsoft and are recommended. GAMES CREATOR
A great program for kids to make up their own games easily and without any knowledge of computing. There are obviously some limitations. Firstly you have only one background screen, then different skill levels are merely the same but faster, and only 5 aliens are possible. Also only sprites can be animated, although the the background can be scrolled to the left. The program contains a sprite editor, a graphics editor, a sound editor and a music editor. I would recommend this to anyone who wants to create their own quick games for fun, or to the serious user who wants a quick way to try his ideas in action.
GO SPRITE
This is, quite simply, the best sprite editor on the market. It is all joystick controlled (or a lightpen or the keys can be used if preferred) and uses on-screen icons to make life very easy. The animation facility lets you see your sprites in action; stepping through an animation sequence and moving about the screen at the same time. Up to 32 sprites can be defined at once, multi colour or normal. Sprites can be overlayed one on the other and DATA statements can be created to use the sprites in your own programs. If you are a games writer, or if you ever need to design sprites, then this is easily the best on the market.

THE A E A MICROPATCH—REVIEW

by Mike Todd
Once again I've had the opportunity of looking at an add-on that provides Radio Amateurs with the facility for sending and receiving teleprinted and morse code messages. This time, it's the AEA MICROPATCH of American origin, distributed in the UK by ICS Electronics Ltd.

The MICROPATCH is really two units within the one box - the hardware section consists of the tone detectors which feed logic-level signals to the C64's user port and the ROM, which connects to the cartridge port and has all the software to do the decoding. These two sections, although mounted on the same circuit board, are totally independent, with no direct connection between them.

The unit is about six inches square and an inch deep, and plugs into the cartridge port of the C64, with a connection to the user port by a separate lead (supplied). The unit requires 12 V DC at 250 mA (not provided), which plugs into the rear of the unit.

For reception, the audio output from the receiver plugs into a miniature jack socket at the rear (a suitable plug is provided), and there's a parallel of this available for feeding to an external loudspeaker. The sensitivity of this input left something to be desired and it was not possible to feed it with the recording output of a receiver - it required a full loudspeaker output.

My problem was that I didn't have an additional loudspeaker available and so it meant plugging headphones into the unit and operating these at fairly high volume to drive the unit succesfully.

Connection to the transmitter is through a mic connector cable attached to the unit, which can be wired to a suitable connector for plugging into the transmitter.

Alternatively, the output is available is on two phono sockets - one providing the FSK (Frequency Shift Keying) output for modulating the transmitter, and a keying output for switching the transmitter.

Keying can be used used on negative or positive systems simply by cutting the appropriate jumpers internally.

There are four LEDs on the top, one indicates power is connected, the other three are tuning indicators - all very useful, but difficult to view while in operation, as the whole unit extends behind the C64.

Even more difficult to get at were the selection switches designed to switch the hardware between CW (morse), the standard amateur frequency
shift of 170 Hz , and a wide shift for RTTY (teletype).
Tone decoding is through a sophisticated dual-filtering system which performs signifcantly better under poor signal conditions than the cheaper phase-locked loop detectors found on other units.

The handbook talks about the North American tone standards and says the receiver should be set to lower sideband - it took a while for me to discover an amendment pointing out that the unit has been set up to the European standard of 1445 Hz for mark and 1275 Hz for space, and that the receiver should be set to receive in upper sideband mode.
Once I'd got all this right, tuning was quite straightforward, despite having to lean over the C64 to see the tuning LEDs - it is a shame that these are not visually represented on the screen.

The switch marked 'wide' provides for a frequency shift of 850 Hz , but for those who want to receive different frequency shifts, the handbook explains how to re-adjust the unit.

While on the subject of the handbook, I must point out that it is by far the best I have encountered with these types of unit.

Some of the theory of operation is explained, and the manufacturers seem to be more than happy for you to dive inside and make adjustments (with the correct background and equipment, of course). The alignment procedure is given, circuit diagrams; parts list and board layouts are provided; and many other useful bits and pieces are included.
It also covers the theory behind RTTY and gives some tips on how (and where) to receive RTTY signals.

I found the hardware performed extremely well, although the everpresent jungle of wires was something of a nuisance - but that is difficult to avoid.

One of the problems of operating a computer and TV in the vicinity of a radio receiver is the amount of RF interference generated. This can sometimes block out all but the strongest signals.

Careful attention to screening, earthing, and positioning solved this problem - that is, until I plugged in the lead that connected the MICROPATCH to the user port. At this point, the RF interference increased and I had to spend some considerable time adjusting my aerial installation.

Those with efficient aerial systems should have no problems at all, those with pieces of wet-string (like mine) may have some problems, but these are not insurmountable and in the process will result in a better receiver performance overall.

That having been done, I also found the RF interference extended to

can rou bentour cian can =s

We're got the biggest (and best) selection of games for the Commodore 64. We think they're unbeatable

MORE THAN GAMES...

Our FREE catalogue lists dozens of programs for your Commodore 64 to help you run your business, write programs, or just enjoy yourself. We've been producing top quality sofware
since 1978. So if you want the best, just remember our name

for business

 Show your computer who's master with are and small busine are Spreadsheat programs are uses reports and so one re difitoutt to to juggle with ngded. The prinich is whis we came up with thevery powerfil - BUSICALC 2, or BUSICALC3 BUSICALC serles. \quad BUSICALC 1, BUSICAL - and one that almost sou alme and money. Whether you choose you can under, use it at work -
you'll get a program it for teaching. It in the home, use it wikRO is a full 65026510 Assammers need, yet so simple to use that professional programmers neers! The MiKRO cands and a we recomme faclities incluali, all for 557.50 . machine language mort, the 64 in the There's inuch more for the Ask your computer SUPERSOF catalogue phone o8-861 1166.

the TV set, creating patterning and tuning problems. These all immediately disappeared if I unplugged the user port connector. After a little bit of tuning around, however, I got a good picture and was ready to try out the software section of the MICROPATCH.

A SYS is used to start up the software - a little inconvenient as it could so easily be made to autostart. The screen then shows a menu with the options Morse, ASCII, RTTY, Command Menu, Options, or Back to BASIC.

Options provided are: unshift on space, morse fill, send RTTY idle characters, audio feedback from keyboard, auto carriage return, auto line feed, word wrap around, CW break in, and output mode. The Command menu provides for loading and saving QSO's or message buffers, working with the message buffers, and setting the real-time clock.

Selecting one of the three operating modes (CW, RTTY or ASCII) brings up a screen display, initially in two parts. The top section is a status area showing receive and transmit mode and speeds, the real-time clock, and amount of buffer space remaining. Below this, the rest of the screen is available for displaying received characters as they are placed in the receive buffer.

Of course, selection of RTTY/ASCII or CW will also have to be done with the switches on the unit itself, although I did manage to work much of the time with 170 Hz shift selected, even when in CW mode.

Received text accumulates in a 29,000 character buffer and can be subsequently saved on disk or tape. At 75 baud it will take 50 minutes of solid reception to fill this up.
In transmit mode, an additional two areas are shown on the screen. After 12 lines of the received character display, there is a single line showing the 40 most recent characters transmitted, and the bottom 5 lines show the most recent characters entered into the transmit buffer. The transmit buffer can hold up to 1024 characters, but these are removed from the buffer as they are transmitted.

The function keys have an important part to play in the operation. They select receive and transmit mode, clear the receive or transmit buffers, allow the speed to be changed, invert mark/space for RTTY, and lock the speed in CW mode, and take a guess at the speed in RTTY mode. The receive buffer can be turned on or off, the printer selected, and a break-in buffer transmitted.

Control key sequences can transmit a predefined message, automatically retum to receive at end of transmission, transmit file from disk or tape, or send the time.

The performance of the unit was good - the RTTY and ASCII modes worked well, provided that the tuning was accurate and the correct frequency shift and speed had been selected. On unknown transmissions, the speed guess feature was invaluable, but it shouldn't be invoked if there is no incoming signal, or the C64 will hang up.

Using the CW section was equally good, although it sometimes took time for the software to lock on to the incoming speed. Once locked, it was able to adjust automatically to minor changes in speed very quickly and major changes in speed after a reasonable time. Incidentally, there is no user-invokable speed guess on CW as it is in operation at all times; instead, the speed can be locked if, for instance, noise is making the software think that the speed is changing.

I was impressed with its performance. The software was easy to use and provided for almost every feature I could have wanted. Where no cables are provided, connectors are included to allow cables to be made up and, with the comprehensive handbook, this goes together to make a well thought-out package.

However, the hardware presentation was a little disappointing. Switches and LEDs were difficult to get at and the large unit hanging out of the back of the C64 was rather awkward to handle. My own preference would be for two separate units - a ROM cartridge (or even disk/tape-based software?) and a free-standing unit that could be positioned to give better access to the mode switches and LEDs.

Overall, I like the whole package and, at $£ 129$ (inc VAT $+£ 1.50$ p\&p) it is a reasonably good buy. There is also a version available for the VIC (at the same price), but with more restricted screen and buffer space.

The units can be obtained from ICS Electronics, PO Box 2, Arundel, West Sussex, BN18 ONX, telephone (024 365) 590. I must thank Alan Clemmetsen (G3VZJ) for his patience in lending me a unit for rather longer than he anticipated.
--oOo--

TEE-SWITCH FOR PRINTERS

by Barry Biddles

(Reproduced by courtesy of ICPUG SE, from their October N/letter No 22)
Many of us, these days, possess two printers: a dot matrix printer for fast listings and drafts, and a daisywheel printer for writing to the bank manager for a further loan. Assuming that they are both centronic interfaced, it is possible to run them, one at a time, from only one interface. However, it can be very inconvenient to have to keep unplugging and reconnecting the interface, especially if the wiring is difficult to reach or hidden within the desk structure. A "tee-switch" is a box which goes between one interface and two printers, and allows either printer to be selected with a switch.

At first glance, this seems almost trivial, and one wonders what could be in a tee-switch to justify the three-figure price tag. To paraphrase Omar,

I often wonder what the dealer buys
One half so costly as the goods he sells.
Well, there are a lot of wires to worry about, and large multi-pole switches are not cheap. Then again, perhaps there are other features that I do not know about, never having met a commercial tee-switch. Probably though, the answer is simply that until recently the numbers involved have been small, and the sales mainly to business users. The purpose of this article is to show the practical electronics handyman how to build his own tee-switch for a tenner or less, depending on the state of the junk-box.

There are several different ways of using the centronics interface, so the first step is to establish what you have got. This is easily done by opening the interface output plug, noting which lines are connected, and what colour they are, then looking in the printer manual to see what they are. There are four types of connection, DATA OUT, CONTROL OUT, CONTROL BACK and POWER/EARTH My own interface is a rather elderly Mill House Designs unit, and has eight DATA lines, pins 2-9, two CONTROL lines, and EARTH. Power for the interface comes from the printer via pin 18, at 5 volts.

It is not necessary to switch the DATA lines. These are outgoing lines, and can safely be taken to two printers over reasonably short lines.

Experiment showed that it was necessary to switch both of the CONTROL lines in my case, namely STROBE (pin 1) and ACKNLG (pin10). On another type of interface, with a more complex handshake, it may be that there are some control lines which do not need to be switched, and you could minimise the switching required by experimenting. Alternatively, and easier, just switch them all - there will not be very many.

There is a subtle danger connected with pin 18 , the 5 v supply. It is essential that you do NOT allow both printers simultaneously to supply 5 volts to the interface. This is because power supplies are low impedance devices, and a slight difference between the two voltages could cause large currents to flow. This problem is best overcome by switching the 5 -volt line as well. In my case, I had a convenient twopole switch, which was already fully booked switching STROBE and ACKNLG, so I looked for another answer. The solution was to take power only from the Epson printer. When using the Juki, the Epson has to be switched on simply to power the interface.

Tom Cranstoun recommends that the power connection to the interface is taken via a separate wire to the connector inside the PET, so that the interface is useable with any other printer that does not happen to be wired up on pin 18 (some of the first Epson MX80s were like this). However, I did not wish to add to the plethora of wires behind my machine.

Some of the printer manuals make a lot of fuss about earth returns, suggesting that each data or control line must have a twisted-pair earth return, distinguishing between logic earth and chassis earth etc. All that I can say to this is that in my own experience and that of one other hobbyist that I have spoken to, all this is unnecessary for short lines, say a metre in length. We both used lightweight 12-core screened cable from RS Components Ltd, using the screen as earth, and have not experienced any difficulties.

Simon Tranmer points out that similar methods can be applied to RS232 printers. Also, it does not have to be one computer connected to several printers. His own system consists of one FX80 connected to an IBM XT, a CBM 8032, a CBM 64 and an Apple 2e. He constructed it for a
fiver, saving well over $£ 300$ on the commercial equivalent. Incidentally, Simon confirms that for short cables you will probably get away with the simple cableform described above. He warns however that some printers can load the bus so much when switched OFF as to corrupt data transfer, so if you do have any trouble try switching everything $O N$ before concluding that the wiring is deficient.

To summarise:
1 Identify the interface output connections, noting the colours.
2 Make up the cable for the second printer using lightweight multicore screened cable.
3 Solder the eight DATA lines, and the EARTH line, to the appropriate output pins within the interface, in parallel with the connections already there.
4 Disconnect all of the CONTROL lines, and connect them to one side of a multi-pole, two throw, break-before-make switch. Connect the new lines to the other side. Connect the poles to the appropriate points on the interface board.
5 Decide how to handle the 5 -volt problem - see above.

TEACH YOURSELF PROGRAMMING 6—_ANSWERS

by Brian Grainger

I asked you last time to create a function which will round its argument to two decimal places irrespective of how many it has to start with.

In BASIC the solution is:
DEF $\operatorname{FNR}(X)=1 N T\left(X^{* 1} 100+5\right) / 100$.
In COMAL the solution is:
FUNC ROUND(X) CLOSED
RETURN INT (X $^{*} 100+5$)/100
ENDFUNC
Well, I said it was easy!

THE GREAT ICPUG COMPETITION

by Mike Todd (who else? - Ed.
Well, it's here at last - a chance to win one (or morel) books,
The problem with a competition in a group like ICPUG is the range of abilities and interests of its members. So, I've had to put something together that all members will have a reasonable chance of winning. As a result, the competition is unusual in that the winners are not likely to be those with all the answers right, although it'll help
Answer as many questions as you can on the following two pages, write them on a piece of paper (or photocopy the pages \& write the answers on this) and send them to me, Mike Todd, at:

27 Nursery Gardens
 Welwyn Garden City
 HERTS AL7 1SF

and PLEASE put a letter C in the top left corner of the envelope. Entries should arrive no later than 12th January and all winners will be notified at the end of the month.

Which book(s) can you win? Well the selection is as follows:
A - Inside Commodore DOS - for advanced disk programmers - includes disk of programs - all worth over £20.

B - Dictionary of Computing (Wiley) - excellent reference which has nearly every computer term explained - hardback and worth $£ 1250$

C - Proper Basic (Wiley) - hard back general coverage book on aspects of BASIC programming worth £12.50

D - BASIC Adventures in Space 1: The Alien Planet - (Dr Watson) prograınming course for the VIC inc cassette and worth $£ 9.95$

E - BASIC Adventures in Space 1: The Alien Planet - (Dr Watson) programming course for the 64 inc cassette and worth $\mathcal{£ 9 . 9 5}$

F - Beginners BASIC course for CBM 64 - (Dr Watson) - includes cassette with Honeyfold's HONEYAID - worth about $£ 10.00$

G - VIC-20 Assembly Language Course - (Dr Watson) - includes cassetre and simple assembler worth £12.00

H - The Commodore 64 Handbook - (Century) - average sort of reference book for the 64 - worth £5.95

1- VIC-20 programmers reference guide - from Commodore - £9-ish
J - Key into your VIC-20 - (Foulsham) - Simple BASIC course - £5.95
Those are the prizes - but you'll have to indicate which ones you are interested in by putting a string of letters at the top of your entry indicating your order of preference on the above books.
l've tried to make the questions fairly universal, and many of the answers will be found in ICPUC newsletters over the last year or so.

If you write the answers on a separate sheet of paper, then please make sure you show which question you're answering by including its number, and don't worry if you can only answer a few, you still stand a chance of winning a prize - my (unbiasedl) decision will be final - it's all really a bit of fun, so don't take it too seriously.

So to the questions:

If you came across the following lines, which machine (or languagel) were they each written for and what do they do?

```
00 POKE 41229,80
01 POKE 808,239
02 POKE 781,5: SYS 60045
03 ZONE 5
04 PRINT CHRS(130); "ERROR"
05 PRINT筧9,CHR$(85);CHR$(58)
-06 POKE 243,122: POKE 244,2
- 07 DCLEAR U9
08 POKE 59458,62
09 GET#2,AS: SY S61827
OA ON KEY'R',: CALL RESET
* OB SYS 64721
- OC SPRINK 1 TO 5,3
OD VDU 65
OE PRINT CHRS(155)
OF POKE 642,16: POKE 644,30: POKE 648,30: SYS64824
```

Now, how well do you know your Commodore products? What products do the following product codes refer to (l've missed out prefix letters)?

. 10	1525
11	2016
12	1910
-13	7501
-14	264
-15	1542
-16	802
17	1502
+18	1071 A
-19	710
$\cdot 1 \mathrm{~A}$	6581
1B	1101
-1 C	1001
$\cdot 1 \mathrm{D}$	1531
1E	$901227-02$
1F	4030

That's 32 questions alreadyl How are you doing? Some are quite tricky, but I don't think impossible. So, what about the following?

- 20 Where is F Bowen?

21 I fumble jet dirt (anag.)

- 22 What does CCR stand for?
- 23 How many K of RAM in the 3032 ?
- 24 His language is also a triarigle - who?

25 Jail racket, MP (anag.)
26 What was wonderful and cheap but became simple, at a greater price
27 (bytes of ViC ROM) $+($ bytes of VIC RAM) + (VIC processor)
26 Scab mission? (anag.)
29 Who or what are Ted and Sid?

- 2A When is $5^{\circ} 022$ not $02{ }^{\circ} 5$?
, 2B Which is the odd-man-out: 6509, 7501, 6502, 6802, 6510?
- 2C Odd-one-out again: E843, 9112, B001, 0000?
- 2D Which executes fastest: (1) $A=A+1$ or (2) $A \%=A \%+1$?

2E Which of the two in 2D uses least memory?
$2 F$ What is special about line number 351111 ?

The following two lines on a PET take a certain time to execute:

```
100 Q=50: BS=TIS
110 A=(2`
```

Will each of the following modifications slow down, speed up or make no difference to the time these two lines take to execute?

```
30 Add line 10 X =50:Y=372.3
31 Change Q to Q% and A to A%
32 Delete line 100 and replace Q with 50 and B$ with TI$ in 110
33 Change line numbers to 10000 and 20000
34 Add line 10 C$="TEST" and replace "TEST" in 110 with C$
35 Put all on a single line 100
36 Run the two lines on a British 64
37 Remove brackets from 110
38 Add line 10 DIM A(100),Q$(100,2)
39 Add line 10 X=2 and replace 2 in line 110 with X
3A Change B$ in 110 to TI$
3B Run the two lines on a }71
3C Change 0.417 to 417/1000
3D Change Q to QQ and B$ to BB$
3E Change line numbers to 1 and 2
3F Add spaces to make lines more legible
```

Finally - no, not quitel What, if any, are the problems that may occur in the following program lines:

```
40 0 GET T$: IF T$=" THEN
41 FOR A(4)=1 TO 100: N=N*1: PRINT 2"N: NEXT
42 T=T/100: IF T=0.87 THEN PRINT "ERROR": END
43 OPEN 2,8,2,0:DATA,S,W": PRINT#2,NM$,AD$,PNS: CLOSE 2
4 4 ~ D = 1 N T ( R N D ( - 4 ) " 6 ) + 1
45 SAVE"0:PROGRAM,U*,8
46 GOTO1000///THIS IS THE MAIN PROGRAM
4 7 ~ P R I N T ~ 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

Now - finally, some general questions:
48 Where is Commodore's UK factory?
49 What is the name of the "head man" in the UK?
4A The PLUS4 is the production version of two other machines, what were they called?
4B About which micro did Jim Butterfield write his first book?
4C How many 64's have been produced in the UK (approxl)?
4D What were the US and UK names of the 64 compatible machine that never appear on the market?
4E Uncle Jack decamped and bought ∞ who?
$4 F$ In what year did Commodore start business?

Well, that's it. Please don't forget to get your answers in as soon as possible and don't worry if you can't answer many, If you've got less than 10 right, then maybe you don't use Commodore machines or read ICPUGI Between 10 and $30 \ldots$ not bad; $40-60$ you're in with a chance of getting a prize; $60-80$ you stand a better chance of getting a prizel if you get between 80 and 90 right then your name is probably Jim Butterfield More than 90 ... you can set the questions next timel

Good Luck = answers next issuel

DISK FILE - SECTOR 11

by Mike Todd

multiple fle copying

Did you know that the COPY command on the 4040 (and presumably other drives too) allows pattem matching? I certainly didn't until Nigel Peters mentioned that he'd discovered that it did.

For instance, if you want to copy all files begining with the letters "PROG" from drive 0 to drive 1 so that they have the same names when they get there, then use the copy command as follows:

```
COPY D0,"PROG"" TO D1,"*"ooe in BASIC 4
PRINT#15,"C1:"=0:PROG"" ooo in other BASICs
```

This discovery allows, amongst other things, batches of files to be transferred - especially useful for those using Wordcraft files.

ILLEGAL RECORD LENGTHS

Brian Crainger mentioned in the September newsletter (p 371) that a record length of 42 will not work. This is true. Neither will lengths of 58 or 63 . These represent that ASCII characters * : and ? which the DOS fails to accept. I guess there's some odd bug within the command string parsing routines.

The values of 42 and 63 return 33,SYNTAX ERROR while 58 returns 30, SYNTAX ERROR.

RESETTING THE DRIVES

There are two very useful methods of resetting the Commodore disk drives. Both are sent down the command channel and the first forces a complete reset as though the drive had just been turned on. This command is:

> PRINT\#15,"U:" or
> PRINT\#15,"UJ"

A second reset technique is slightly different, and generally resets the drive at the point AFTER the normal diagnostics have been
completed. This is done as follows:

$$
\begin{aligned}
& \text { PRINT\#15,"U9" or } \\
& \text { PRINT\#15,"UI" }
\end{aligned}
$$

I have read that these commands should not be used as they cause the drive and/or computer to crash. In my experience this is only because the commands were followed to soon by another disk access.

Inevitably, if the drive is in the process of resetting, it will not be in a position to handle any computer activity and will hang up. Therefore, a delay of at least a second is recommended, especially after "U:". A simple FOR loop from 1-1500 would suffice.

LOAD"*",8
When any Commodore drive is initialised, the LOAD"" command will always load the first file on drive 0. Thereafter, LOAD"*" will load the last file accessed by the drive. Therefore, if a program has been using files it may be that a LOAD"" will try to load the last file accessed - in other words a file type mismatch will occur.

In order to guarantee that the first file on the drive is loaded, the command can be change to LOAD" $0::^{* \prime-}$ - the addition of the drive number makes the DOS perform a pattern match and this forces the first file in the directory to be loaded.

SPECIFYING DRIVE NUMBERS

I'm sometimes asked if the drive number should be explicitly stated when working with single drives. In theory there is no need since these drives automatically default to drive 0 .

However, in keeping with my policy of never letting the drive set up its own parameters wherever possible, I would suggest that even with the 1541 , drive 0 should be specified in all operations.

This principle should be applied to all aspects of disk operations, not just where the drive number is concerned. It is certainly not proven, but I believe that this precaution helps sort out one or two anomalies that have been found with single drives.

SPEEDING UP OF THE 1541

Though the serial connection is responsible for much of the 1541's lack
of speed, there are a couple of other factors that don't help.
One of these is the fact that, once the drive turns the motor on, it will be nearly 15 seconds before any reading or writing can take place. In addition, the slow speed of the head movement contributes to the overall delay in getting to the required track and starting the read or write operation.

All these timings are a direct function of a timer in one of the interface chips and it is possible to change the timing constant held in location \$1C06/\$1C07.

Ignoring the low order byte, the following command will change the timing constant to X :
PRINT\#15,"M-W"; CHP\$(7);CHR\$(28);CHR\$(1);CHR\$(X)

The timer is initialised to $\$ 3 \mathrm{~A} 00$ (14848) which results in a timing pulse every 15 mSeconds . Changing it to $\$ 2000 \quad(X=32)$ will make a significant difference in certain aspects of 1541 operation.

However, a couple of words of caution. Firstly, the same timer is used to determine how long it should be before the motor is turned off after the drive was last accessed. If set too short, it may be that the drive ends up being turned off too often, remembering that every time the drive motor is turned ON, there is a delay.

Also, the stepper motor which positions the head can only operate up to a certain speed and making it move too quickly will not only cause it to move incorrectly, but may also cause damage if it runs too long at the faster speed. A faster speed also means that the bumps will be heftier and likely to cause alignment problems quicker.

Therefore, this information is given mainly for experimentation although I have found that $X=32$ appears to be an acceptable value.

CARE OF DISKS

A recent MICRO-LIVE program on BBC demonstrated that disks are far more durable than we are led to believe. However, the tests performed by the programme were totally misleading and could well lull disk users into a false sense of security. They totally ignored the long term cumulative effects which can occur.

I would therefore suggest continued care!

4040/1541 COMPATIBILITY

Several times I have mentioned that disks written to on a 1541 drive should no longer be considered write compatible with the 4040 . However, rurther investigations show that the problem is not as clear cut as it was originally thought.
One aspect of the problem is related to head alignment. If the head of the writing drive (which could be any drive, not just a 4040) is out of alignment, then writing a block on one track may well cause the partial erasure of the header block on another.

Header blocks are written once and for all when the disk is formatted and they never get re-written until it is formatted again. The blocks of data, on the other hand, are obviously re-written whenever a write occurs to that block

Unlike normal magnetic tape recording, the disk head does not erase the old data before writing, it merely writes all over the top of it. This is perfectly adequate to obliterate data immediately under the head, but the possibility exists that old data at the edge may not get fully over-written, especially if there is a very slight misalignment. So, the head writes a wider track than necessary, and then erases the edges to reduce the track width - this is known as 'tunnel' erasure.

The problem arises when the drive doing the writing is badly out of alignment and this erasure encroaches on the header block of the next track and partially erases it.

This can even occur within the same drive over a period of time as the head goes out of alignment due to the bumps, as mentioned before.

The only real solution to this is to make sure the drive maintains its alignment and the second is to do regular back-ups onto freshly formatted disks.

The other cause of write incompatibility is the fact that the distance between headers and data blocks is different between the 4040 and 1541. So how does this cause problems?

This requires an understanding of how the 4040 and 1541 work with headers. Remember that characters are encoded as 10 bits, and these are written 10 at a time on the 4040 but only 8 at a time on the 1541.

The 4040 reads the 6 characters (60 bits) of the header block, waits 9 cycles (10 bits each) and then writes a sync. Because of slight timing delays, the actual gap is around 93 bits.

The 1541 actually has about 84 bits between the end of the header and the start of the sync sequence - slightly shorter than on the 4040.

Now, if we take a disk that has been written to on a 1541 and then write to it on a 4040 , the 4040 will start to write its sync sequence after about 93 bits -9 bits AFTER the point where the 1541 had written its sync sequence.

A sync is only detected after 10 consecutive 1 's have been read, and these 9 left-overs would normally be no problem. However, if the bit preceding this left-over sequence also happens to be a 1, or the 4040 is running slightly faster than the 1541, the sync pulse could be written after 10 bits of the left-over 1 's.

But of course, it's the END of the sequence of 1's (denoted by the first 0 following the sequence) which marks the point at which the drive will start to read data. Unfortunately, at the moment it starts to write the sync, the 4040 puts a spurious 0 on the disk - this is not a fault or a design error, just a fact of life.

This means that, if things aren't going perfectly right, the leftover 1541 sync sequence will be detected as such AND the start of the 4040's sync will be mis-interpreted as the start of the actual data.

The result is a DATA BLOCK NOT FOUND error.
So what, if any, are the solutions? Well, Commodore have introduced a modified 1541 ROM to increase the 1541 header gap by 8 bits.

Another is to modify the 4040 to write its sync pattern earlier. This can be done by altering location $\$ 109 \mathrm{D}$ which contains the header gap length as follows:

OPEN 15,8,15
PRINT\#15,"M-W"; CHR\$(157); CHR\$(16); CHR\$(1); CHR\$(8)
CLOSE 15
This should be performed only if it is necessay to write to a disk which has been written on a 1541. The 4040 should be reset before any further writing is performed.

On the 1541 , this header gap length is fixed in ROM, but as I mentioned above, Commodore have modified it on later ROMs. To determine which of the 1541 ROMs you have, it is possible to examine the byte that determines the header gap length .

There are actually two relevant locations. One at \$F58D for use when
writing a block, and one at \$FCDO used during formatting. The value of the first of these can be checked using the following routine:

```
OPEN 15,8,15
PRINT#15,"M-R"; CHR$(141); CHR$(245); CHR$(1)
GET#15,A$
PRINT ASC(A$)
CLOSE 15
```

If the result is 8 then you have an early ROM and should not attempt to write to one of your 1541 disks on a 4040 . However, if the value is 9 then there should be no problem.

It should be emphasised that the operating system in the 2031 drive is virtually identical to the 1541, but there have been no similar ROM revisions.

While on the subject of 1541 ROMs, three different versions of the E/F ROM have been identified to date. I intend to discuss these in a later DISK FLE, but for the time being, the ROMs so far identified are:

901229-02	Gap count $=8$
901229-03	Gap count $=9$
901229-05	Gap count $=9$ \& several bugs fixed

If anyone can identify any other ROM release for the 1541 I'd very much like to hear about it - for instance, where did ROM -04 get to?
--oOo--

700 COLUMN

by Mike Todd

TRANSFERRING PROGRAMS TO 8000 OR PET

In the last issue, Joe Griffin mentioned transferring programs from the 700 series onto an 8000 .

The problem is that the load address for the 700 is actually location $\$ 0003$, which is in zero page, and the program will overwrite system variables on other machines - not too healthy an operation.

Even if the start address were ammended on the program file, the link addresses appear to cause problems when the 8000 (or other Commodore machine) attempts to re-link after loading.

Although Joe's program is one way of solving the problem, I found two other methods.

The first is very long winded and requires that the complete program be listed to a disk file as follows:

OPEN 2,8,2,"name,S,W": CMD2: LIST: CLOSE2)
and then merged back into the destination machine using one of the many merge techniques currently available.

An easier method is to make the 700 think its own BASIC starts at $\$ 0401$, load the program (which automatically relocates it) and then save the program again - this time it will have been saved from \$0401, just as it would on the other machines. This is what you do:

POKE 46,4: POKE 45,1: - set start of BASIC pointer
BANK 1 .- select BASIC text bank
POKE 1024,0 - and make first byte $=0$
BANK 15

- restore system bank

DLOAD"program" - load the program, it relocates
DSAVE"newprogram"

- and save it

Restoring the 700 to normal is a matter of turning off and on again, or doing the same again but replacing the $4 \& 1$ in the first two POKEs with 0 and 3.

I don't intend to reproduce the memory map of the 700 series in the newsletter as it is perhaps of limited interest. In any case, machine code programming on the 700 is something of a chore as, at least for simple programs, there really is only 1 k available from $\$ 0400$ to $\$ 07 \mathrm{FF}$.

Attempting to write machine code in any of the other banks is certainly possible, but requires many careful considerations, I have found that large programs are best written in BASIC, with machine code used only when absolutely essential.

Because of the banking operation, many zero page pointers are now three bytes long with the third byte containing the bank in which the pointer points. This doesn't appear to apply to the usual BASIC text and variable pointers as the system makes assumptions according to the machine.

Whilst on the subject of banking, the 700 comes in two varieties. The 256 k version and the, commoner, 128 k version (the 710). The banks are allocated as follows:

	128k version
BANK 0	not used
BANK 1	BASIC text
BANK 2	All variables
BANK 3	
BANK 4	
BANK 5-14	
BANK 15	Sytem memory

256k version
not used
BASIC text
Arrays
Simple variables \& DOS
Strings
System memory

* indicates the bank is not present, but is available for expansion.

All POKEs and SYS go to BANK 15 unless the default bank has been changed using the BANK command

I don't intend to cover much more about memory layout unless there is a demand - please let me know if you are using a 700 series machine and would like further details as this particular series has been notably neglected both by ICPUG and Commodore yet I consider it to be one of the best machines that Commodore have every produced (apart from programming in machine code!). If nothing else, its keyboard is superb.

THE 700 SCREEN

The 700 screen editor is different to other Commodore machines and theoretically allows lines of up to 255 characters to be entered, although in pratice lines appear to be limited to 160 character, even though the buffer is 256 characters long. It does this by automatically tagging a new wrap around line onto the previous line regardless of the number of wrap lines already linked.

However, it is possible to disable this feature and stop any wrap around occuring so that the screen behaves like the 8032 series and the line length is determined entirely by the current window width. This is done by a simple POKE:

POKE 923,64 - disable line wrap - like 8032
POKE 923,0 - enable it again
Note that some ESC sequences may disable the effect of this POKE

CHR\$(131)

The character $\operatorname{CHR\$ (131)}$ has something of a special use on the 700 series. It is effectively the CHR\$ equivalent of pressing SHIFT and the LOAD/RUN key and will invoke the same operation. In other words, PRINT CHR\$(131) in direct mode is exactly the same as SHIFT+RUN/STOP that is DLOAD"" followed by RUN. If DLOAD fails for any reason then RUN is encountered and the program in memory is executed.

If used in a program, the 700 remembers the character and only actions it when the program returns to direct mode through END, STOP or an error occuring. This has hidden dangers if an error occurs during program development when using the CHR\$(131) feature. As soon as the program stops, the command is executed and the program loaded will overwrite the current program in memory.

DCLEAR COMMAND

There appears to be an extra disk command not shown in the handbook of the 700. It is DCLEAR (with optional drive number) which appears to cause the drive(s) to be initialised.

That's all for this time. If you want more on the 700, drop me a line and let me know.

COMAL CORNER

by Brian Grainger

It has been quite some time since the last COMAL Corner and in that time many of you have taken the opportunity to get the latest version for the Commodore 64, i.e. 0.14. Many of you have written to say how much you like it and that it has freed you from the PEEKs and POKEs to get at the hires graphics and sprites.

The other major influence of 0.14 has been for you all to want the cartridge! In the notes I sent out with 0.14 I said the cartridge was expected in November. As with most Commodore dates this date has not been met, but the reason is rather unusual. The original intention was for the cartridge to be marketed through Commodore Denmark. However, demand in Germany for COMAL has been increasing and Commodore Europe felt that it should be marketed through their offices. Consequently, arrangements for shipping ROMs had to be changed. At the time of writing I believe the first ROM samples are on their way to Denmark for approval. What I do not know is when ROMs will arrive in quantity and what that quantity will be. I do know that demand in Denmark is high and 50 per cent of the initial batch was earmarked for the USA. At one time Commodore USA were leaving COMAL marketing to the US COMAL Users Group Ltd. but I understand that this is being reviewed again. The delay in the appearance of the cartridge has meant that I have not yet put together the COMAL News Sheet No. 2 and the details I promised last July are not worth giving yet. It would only make you frustrated that you cannot get it!

Since last time I have written to the US COMAL Users Group Ltd. and they have kindly sent me the first four issues of their COMAL dedicated newsletter along with the disks of programs that go with the newsletter. I have permission to distribute their programs and publish their articles so when I have sorted things out a little bit there should be quite a bit of new stuff. As a taster, their latest newsletter was 56 pages and includes a fairly detailed memory map of COMAL version 0.14. More of that next time perhaps.

A number of you have been sending in some programs and I shall be collecting them together as an applications disk of COMAL programs. These will be distributed here in Europe and, of course, a copy will be
sent to the USA. Details will probably be available next time. Bert Millest has written some very good demonstration programs of various methods of sorting and these will form part of the disk.

One reader has pointed out an error in the notes that went with COMAL 0.14. The RIND function for choosing a random integer value in a given range was incorrectly given as $\mathrm{RND}(\mathrm{n}: \mathrm{m})$ where the range is $\mathrm{n}-\mathrm{m}$. This should have read $\operatorname{RND}(\mathrm{n}, \mathrm{m})$. I do hope this hasn't caused too much head scratching.

Lots of you seem to be using COMAL with your various printers and plotters. Many of you seem to be having problems with facilities that require a secondary address. Let me clarify how to open a file to the printer with a secondary address other than the default.

The syntax of OPEN in its full form for printers:
OPEN FILE <num>,"",UNIT 〈dev>, <sa>,WRITE
Replace <num> with the file number but DO NOT USE 1 as COMAL uses that for itself.
Replace <dev> with the device number, usually 4 for the printer and 6 for the printer plotter.
Replace <sa> with the required secondary address.
File number 255 is rather special as this is the file number used when you SELECT"LP:"

One can print in lower case on the Commodore printers by making use of this.
First OPEN 255,"",UNIT 4,7,WRITE and then SELECT"LP:" will print in lower case. To return to upper case first CLOSE FILE 255 and SELECT"LP:" will print in uppẹr case. I have not tried it but it may be possible to list to the printer plotter by using UNIT 6 in the print statement above. I have recently had a reader saying he cannot open a file to secondary address 2 to change the pen colour on the printer plotter as he would with BASIC. I have not solved this problem yet, because I do not have a printer plotter! If anybody knows how to change the pen colour using COMAL let me know.

One other problem with printers is that some of you are using the MX80
with suitable interface. In this case secondary address 128 MUST BE USED if the printer is to give sensible results.

How many of you noticed the mistake in my last 'Teach Yourself Programming' article, and I do not mean that it started on page 332 and not 322 as given in the contents! Line 30 on page 333 should have read: $0030 \mathrm{j}=\mathrm{j}$ div 60 rem tum jiffies into seconds

One more item of proof that COMAL is catching on is given in the Guidelines for Computing Studies by the Scottish Education Board. I quote from their Introduction to the programming course.
'It was felt that in this course one language should be used for all three levels - Foundation, General and Credit - and that language should be well structured. The use of procedures will be required from the outset to enable pupils to construct solutions to problems by building up short but powerful programs. These might involve the input, sorting and output of names, ages and other personal details. This immediately necessitates bi-directional parameter passing and the use of arrays as parameters. It is felt that COMAL best fits the requirements and, from 1986, IT WILL BE THE SOLE LANGUAGE USED.'

The capitals are mine but it is clear that the Scottish Education Authority have seen the light. Praise be the day the English authorities feel the same way. It is interesting to note that the socalled Structured BASIC of the BBC Micro does not meet the requirements above on two counts. Firstly, bi-directional parameter passing is not possible and, secondly, arrays cannot be used as parameters!

Let me finish this article by providing some procedures to draw circles, lines and arcs as well as some to undraw them! They come courtesy of Peter Smith and the listing is not indented to save newsletter editing.

9000 proc circle (x, y, r) closed
9010 an $=2$
9020 setheading (270)
9030 moveto $\mathrm{x}, \mathrm{y}+\mathrm{r}$
9040 for deg: $=0$ to 360 step an do
9050 forward ($(\mathrm{r} / 57$)"an)
9060 left (an)

9070 endfor deg
9080 endproc circle
9090 proc $\operatorname{arc}(x, y, r, s a, d a)$ closed
9100 an: $=2$
9110 pi $=3.141593$
9120 moveto $\mathrm{x}+\left(\mathrm{r}^{* \prime} \cos \left(\mathrm{sa} / 180^{*} \mathrm{pi}\right)\right), \mathrm{y}^{+\left(\mathrm{r}^{*} \sin \left(\mathrm{sa} / 180^{*} \mathrm{pi}\right)\right)}$
9130 setheading ($360-\mathrm{sa}$)
9140 for deg:=sa to sa+da step an do
9150 forward ($(\mathrm{r} / 57$)"an)
9160 left (an)
9170 endfor deg
9180 endproc arc
9190 proc ucircle (x, y, r) closed
9200 an:=2
9210 setheading (270)
$9220 \mathrm{p}:=\operatorname{peek}(646)$
9230 pencolor (peek(53281)-240)
9240 moveto $\mathrm{x}, \mathrm{y}+\mathrm{r}$
9250. for deg $=0$ to 360 step an do

9260 forward (($\mathrm{r} / 57$)"an)
9270 left (an)
9280 endfor deg
9290 pencolor (p)
9300 endproc ucircle
9310 proc uarc(x, y, r, sa, da) closed
9320 an:=2
9330 p:=peek(646)
9340 pencolor (peek(53281)-240)
9350 pi $:=3.141593$
9360 moveto $x+\left(r^{\prime \prime} \cos \left(s a / 180^{*}\right.\right.$ pi)), $y^{+}\left(r^{* \prime \prime} \sin \left(s a / 180^{*} \mathrm{pi}\right)\right)$
9370 setheading ($360-$ sa)
9380 for deg:=sa to sa+da step an do
9390 forward ((r/57)*an)
9400 left (an)
9410 endfor deg
9420 pencolor (p)
9430 endproc uarc
9440 proc uplot (x, y) closed
$9450 \mathrm{p}:=\operatorname{peek}(646)$
9460 pencolor (peek(53281)-240)
9470 plot x, y

9480 pencolor (p)
9490 endproc uplot
9500 proc line $(x 1, y 1, x 2, y 2)$ closed
9510 moveto $\times 1, y 1$
9520 drawto $\times 2, y 2$
9530 endproc line
9540 proc uline $(x 1, y 1, x 2, y 2)$ closed
$9550 \mathrm{p}=$ peek(646)
9560 pencolor (peek(53281)-240)
9570 moveto $\mathrm{x} 1, y 1$
9580 drawto $\times 2, y 2$
9590 pencolor (p)
9600 endproc uline

$$
-\infty 000^{-\infty}
$$

TEACH YOUR GRANDMOTHER 10

If you are printing a lot of information to the screen and wish to prevent the data scrolling off before the reader has a chance to absorb it then try this technique.

Keep a count of the number of lines that have been printed and test to see if you have a screen full. If you have then wait for a key to be pressed before continuing.
e.g.

10 FOR $A=1$ TO X
20 PRINT $\mathrm{B} \$(\mathrm{~A}), \mathrm{C} \$(\mathrm{~A}):$ REM printout data
30 IF A/22 <> INT(A/22) GOTO60
40 PRINT"PRESS SPACE BAR TO CONTINUE"
50 GETAS: IF A\$<>" " GOTO50:REM wait for space bar to be pressed 60 NEXT

This stops printing every 22 lines and waits until the space bar is tapped. You could just as easily use:
10 PRINT B\$,C\$
$20 \quad A=A+1$
30 IF $\mathrm{A} / 22$ <> INT(A/22) etc,etc

64 LIBRARY

The following is a list of the contents of two new 64 library disks, numbers 7 and 8 , which are now available to members.

Most notable of the programs from this list is Synth Sample, on disk 7. This was one of the many new things that Jim Butterfield brought with him to the PET Show this year and has to be heard to be believed.

As the number of 64 owners is still growing at a rapid rate, we are always interested in anything new that members may have written which may be added to the library, If you have anything that you think should be included please send it in to us (on disk or tape and with a brief description and any helpful instructions).

May I remind members to please observe the rules when applying for programs (see vol 6. no 3. p212).

Dave Vorberg. 64 Software Organiser

Disk 7 - Graphics and Music.
LIST ME Contains descriptions of the programs on disk.
SLIDESHOW Loader program for Hires Screen Show.
RONNIE
SLADY
TANK
BLITHER
UNCLE
Glockenflute
A little peace
BACH FUGUE
THE ENTERTAINER FROSTY
RAINBOW
SOUND EFFECTS
SYNTH SAMPLE
PRELUDE
STARWARS MUSIC
HAPPY BIRTHDAY
Song - A Little Peace.
Tune - Quite long.
Tune - The Entertainer.
Theme tune for Frosty.
Song - With words and music.
Create your own sound effects. Plays different tunes chosen from a menu. Tune - Classical. Theme to Star Wars with graphics. Song - With words and music.

Disk 8 - Utilities and Games.
LIST ME Contains descriptions of the programs on disk.

NEWS EDITOR
80 COLUMN
READ ANY SEQ.
FAST FORMAT
REL FlLe PRG
4MIN COPY INSTR
4-MINUTE COPY
LOAD ADDRESS
DISK MONITOR
4. ASM/MON.

FALIGN CHECK
UNSCRATCH
SCRATCH
SORT DIRECTORY QUICK DISK
FAMILY ROOTS
DICE SPRITE
WORD PROCESSOR
SUPERTREK
TIPS
CAVES
ASTRO PANIC
BOOT MATHS
SPACE NIM
SOUND HELPER
BLACKJACK
TWIN BAGELS
BATTLESHIPS
PENTOMINOS
HIRES MOTION
CLIFFY
MINOTON

Edits many word processor files.
Produces 80 column screen using hires. Allows sequential files to be listed to the screen.
A quick disk formatter.
Read, write relative files.
Instructions for 4-Minute copy.
Fast disk copier.
Finds the start address of programs on disk.
Disk monitor.
Machine code for Disk monitor.
Checks alignment of disk drive.
Unscratch a disk file.
Scratch a disk file.
Sorts disk directory into al phabetical order. Fast disk program loader.
Trace your family roots program.
Displays dice sprite.
A simple word processor for the 64.
Star Trek game with sound and colour.
Tips on the 64 for the beginner.
An adventure.
A shoot 'em up space game.
Test your maths skills - with sound and graphics.
The game of NIM.
Learn how to make use of the SID Chip.
A card game.
Bagels for two.
The game of battleships.
The game of pentominos.
Hires picture with the illusion of movement.
Questions answered correctly make man jump a cliff Track down the Minoton.

IMPROVED FORMAT SUBROUTINE!

Grandpa's letterbox was inundated with mail from members claiming to have the 'all-singing, all-dancing' formatting routine after 'Teach Your Grandmother 7^{\prime} in the July issue. The following article is by Mike Hart whose routine came closest to fulfilling the claim.

Many routines have been published in the past to provide a way of 'formatting' numerical data so that it is rounded to the specified number of decimals and to ensure that the decimal points line up when it is printed in a column. Many of these routines are very long and tortuous and may slow the system down considerably if there are a lot of numbers to process. I therefore decided to write a routine (in BASIC) which would be as short and as economical as possible, which would approximate to the speed of machine code routines and would format fully even 'difficult' numbers such as exponentials.

In particular, the routine needed to:

- round both positive and negative numbers correctly avoiding the errors that are occasionally introduced when the CBM arithmetic routines process certain numbers - try to round 812.676144 by using the INT(X"1000+0.5)/1000 approach!
- process numbers less than $+/-0,01$ that would otherwise be expressed in exponential mode.
- put in leading zeros for values between +1 and -1 (e.g. to ensure that ${ }^{7}$ is expressed as 0.7).
- add a fractional part of trailing zeroes to ensure consistency so that when working to 3 decimal places 23 will be expressed as 2300 and 2 as 2000 , for example.

The routine presented here is effectively contained in three lines (i.e. lines 3-5) and assumes that whatever number one wishes to process has been copied into the variable Z. The other variables associated with the formatting subroutine all start with Z so that the programmer can avoid contaiminating the rest of the program. Line 1 sets up certain default values but these may be changed in the course of the program if desired. The demonstration (line 10 onwards) is set up with three decimal places (Z3), a rounding factor of 1000 (Z4) and a 'fieldlength' of 9 (Z2). The string of padding blanks (Z1\$) (see note 1) can always be made longer if desired, and obviously the COTO at the end of line 1 points to the normal start of the program. Notice particularly that Z4, the rounding factor, is specified EXACTLY - if you attempt a
short-cut such as $Z 4=10 \uparrow Z 3$ then the result may be internally stored in a slightly inaccurate form and this may introduce errors later on. This is due to the fact that exponentiation involves manipulating the logarithm of a number and some loss of accuracy is possible. A 'balancing factor' (Z6) is included to compensate for occasional failures to round exactly. The internal constrution of the programe is as follows:

LINE 3 Makes a rounded string of the number multipled by the rounding factor. Notice that this works just as well for negative as for positive numbers. The 'balancing factor' (Z6) is necessary because the CBM interpreter does not Force a round before performing INT and one has to correct this deficiency. The balancing factor is the smallest that trial-and-error has demonstrated to be effective for both positive and negative numbers. If you wish to demonstrate the presence of the INT bug for yourself then try the followiwng;

PRINT 123.4555*1000 + 5, INT (123.4555 " 1000 + 5)
Both should give 123456 but the INT gives 123455 due to the bug. The presence of the 'balancing factor' enables numbers such as 123.4555 and -123.4555 to round correctly to 123.456 and -123.456 respectively. If you do not mind the occasional inaccuracy casued by failure to round up, then you can cut out the reference to $\mathrm{Z6}$ in line 1 and the whole of the term ' $Z 66^{\prime} \operatorname{SGN}(Z)$ ' in line 3 . This also has the advantage of speeding up the whole sub-routine by some 10% but personally I would rather sacrifice a little bit of speed for complete accuracy. (Incidentally, the PRINT USING routine in the COMMAND-O chip will fail to round a negative number such as $\mathbf{- 1 2 3 . 4 5 5 5}$ to 3 decimal places correctly!)

LINE 4 is only called into play for numbers (positive or negative) that are less than 1 and require a leading zero to be inserted. The effect of Line 4 is to turn, for examaple, -.123 into -0.123 or $7 E-03$ into 0.007 . Numbers that would normally be expressed in scientific notation get turned into 'normal' numbers by this line but a similar technique is not used for very large numbers, which generally constitute less of a problem. (Numbers larger than $+/-999999.9995$ are handled incorrectly by this routine and if you think your program may produce numbers out of this range then you should test for them before calling the routine and deal with them independently).

LINE 5. This line is one of the most critical in the whole subroutine. If we assume that a Z of 123.4555 has been converted to the string $Z \$$
of 123456 (in line 3) then this line inserts the decimal point in the correct place and pads to the left with blank spaces before RETURNing. it is obviously necessary that integers avoid this line altogether and that is why they are taken care of by the conditional statement at the end of line 3 .

How fast is the routine?
Given that care has been taken to ensure that the routine is as accurate as possible, how does it compare with machine code routines for speed? In order to make meaningful comparisons, I undertook some trials that compared my BASIC PRINT USING routine with (a) the COMMAND-O chip PRINT USING routine in a BASIC4 4032 PET and also with (b) the PRINT USING routine given by Raeto West in 'Programming the PET/CBM'. The results are summarised in the table below:

Averages of 5 trials using 1000 numbers

PROGRAM	MACHINE	AV. TIME	No PER SEC
BASIC PRINT USING	C-64	0.0540	18.5
RAE WEST PRINT USING	C-64	0.0411	24.3
BASIC PRINT USING	4032 PET	0.0518	193
RAE WEST PRINT USING	4032 PET	0.0375	26_{0}^{7}
COMMAND-O PRINT USING	4032 PET	0.0472	212

The BASIC PRINT USING stands up pretty well to the machine code opposition! In the case of the Rae West routine, the routine works by truncation and does not round at all (you have to do this before the number is sent to the subroutine) nor will it attempt to process numbers expressed in exponential format (such as $1 \mathrm{E}-03$) which severely limits its usefulness. As we have seen, the COMMAND-O PRINT USING also has some deficiencies and will also make a mess of some exponential numbers e.g. 1E-03 which is 0.001 emerges as 003000 to 3 decimal places. All in all, the BASIC PRINT USING comes out well in the accuracy stakes and also formats and prints at some 19 numbers to the second which, as you can see, starts to get pretty close to the speed of the machine code routines.

The use of the PRINT USING routine
To incorporate this PRINT USING routine into your own programs it is best to type it in exactly as shown from lines 1-6 (although lines 2 and 6 are only to assist readability, including the use of the low line numbering. The reason for this is that line 1 defines variables at the very start of the program and when these values are called, the
internal routines do not have to search through other variables in order to find them. For the same reason, constants have been defined as variables, as this too speeds up the entire subroutine. These techniques are applicable to other BASIC programs as well where speed is important. If you know that you are not going to require integers then you can cut out the whole of the conditional statement contained at the end of line 3; this too will speed processing slightly.

To call the sub-routine merely copy whatever variabale you wish to format into \mathbb{Z} and then call the subroutine with GOSUB 3. You may consider that this is a slightly messy way to do it - why not use a user-defined function instead? As you might have guessed, the userdefined funtion takes quite a bit more time to process and therefore 1 chose the 'copy' method. The fully formatted number is returned as $2 \$$ for you to PRINT to screen, printer or disk as you wish.

If you wish to alter the number of decimal places in the couse of the program then you need to alter the parameters of $\mathbb{Z 3}$ and 24 。 To effect the change, make $Z 3$ the number of decimal places required and $Z 4$ the relevant rounding factor. For example, to round to two decicmal places make $\mathrm{Z3}=2$ and $\mathrm{Z4}=100$ before the subroutine call. These values remain in effect until you change them again.

If any readers have come across a BASIC PRINT USING routine that formats to the same level of accuracy and is faster, then I would be most interested to hear of it.
$1 Z \mathbb{Z S}=": Z=0: Z 3=3: Z 2=9: Z 4=1000: Z 5=5: Z 6=0.0000307: Z 19=0 \quad$ ": COTO10
2 :
$3 Z \$=\operatorname{STR} \$\left(1 N T\left(Z^{*} Z 4+\not \subset+Z 6^{*} S G N(Z)\right)\right): I F Z 3=0$ THEN $\mathrm{Z} \$=\mathrm{RICH} \$(\mathrm{Z} 1 \$+\mathrm{Z} \$, \mathrm{Z2}):$ RETURN
4 IF $\operatorname{ABS}(Z)<1$ THEN $Z \$=\operatorname{LEFT} \$(Z \$, 1)+\mathrm{RIGHT} \$(" 000 "+\operatorname{MID\$ }(Z \$, 2), Z 3+1)$
$5 \mathrm{Z} \$=\mathrm{RICHT} \$(Z 1 \$+\operatorname{LEFT} \$(Z \$, L E N(Z \$)-\mathrm{Z3})+" 。 "+\mathrm{RIGHT} \$(Z \$, Z 3), Z 2):$ RETURN
6 :
$10 x=\operatorname{RND}(0): N=16: C=1$
20 FOR =1TON:X=EXP(RND(1)*14-5)*C:Z=X:IF J<10 THEN PRINT" ";
30 PRINTJ,X;SPC(18-LEN(STR\$(X)));:A=TI:GOSUB3:PRINTZ\$;: $B=B+(T I-A): P R I N T$
$40 \mathrm{C}=-\mathrm{C}: \mathrm{NEXT:PRINT}$
$50 \mathrm{AV}=\mathrm{B} /\left(\mathrm{N}^{*} 60\right):$ PRINT "AVERAGE"; $A V$;" SECS"
60 END
$70:$
100 REM $Z=$ ORIGINAL NUMBER TO FORMAT
110 REM Z $\$$ = OUTPUT STRING

```
120 REM Z2 = FIELD LENGTH
130 REM Z3 = NO. OF DECIMAL PLACES
140 REM Z4 = ROUNDING FACTOR
150 REM Z5 = HALF ADJUST (0.5)
1 6 0 \text { REM Z6 = BALANCING FACTOR}
170 REM }\square=\mathrm{ STRING OF PADDING BLANKS (see note 1)
180:
190 REM 3 DECIMAL PLACES BY DEFAULT
200:
210 REM FOR DIFFERENT FORMATS MAKE:-
220:
230 REM Z3 - DECIMAL PLACES REQUIRED
240 REM Z4 - RELEVANT ROUNDING FACTOR
250 REM E.G.
260 REM Z4 = 1 FOR INTEGERS
270 REM Z4 = 10 FOR 1 DECIMAL PLACE
2 8 0 \text { REM Z4 = 100 FOR 2 DECIMAL PLACES}
290 REM Z4 = 1000 FOR 3 DECIMAL PLACES
300:
310 REM E.G.FOR 2 DECIMAL PLACES
320 REM Z3=2:Z4=100:Z=X:GOSUB3:PRINTZ$
```


Note 1.

Ken Rose also wrote in on the subject of formatting and makes the valid suggestion of using shifted spaces as padding. The BASIC interpreter treats shifted spaces differently from normal spaces and will therefore not remove 'leading blanks' used as padding when using INPUT to read formatted data from screen or disk.

C 64-SPECTRUM EMULATOR

In the July Newsletter, under Shop Window, an incredible product was mentioned which supposedly allowed Spectrum (that's twice in one issue! - Ed) programs to run on the 64. Surprise, surprise but this product has failed to materialise and Video Vault, who intended to market it, have undertaken to refund monies sent to them. They are still optimistic that it will appear and are keeping a file of interested persons. We are indebted to Mr DR Corbett, a member from Maidstone, for this information.

NATIONAL COMMITTEE FOR 1985

David Annal ACC REPRESENTATIVE AND 64 LIBRARIAN SOUTH
Tim Arnot REGIONAL ORGANISER \& REGIONS SOUTH
John Bickerstaff DISCOUNT OFFICER
Alan Birks 4040 SOFTUARE LIBRARIAN NORTH
Harry Broomhall COMmUNICATIONS
David Broughton SECRETARY
Jack Cohen MEMBERSHIP SECRETARY
John Collins CBM LIAISON
Tom Cranstoun ASSISTANT EDITOR SUPERBASE
Hugh de Glanville NEWSLETTER EDITOR
Terry Devereux ARTISTIC ADVISOR
Rod Eva ASSISTANT MICRONET EDITOR
Ron Geere ASST EDITOR, TECH ADUSR \& ASST REGNL DRGGSRR. ALSO FARNGOROUGH REGN Jennifer Goldsmith TREASURER
Brian Grainger COMPUNET/PRESTEL EDITOR \& COMAL REP. ALSO HITCHIN REGION
Joe Griffin 4040 \& 8050 LIBRARIAN, (4040 SOUTH)
David Harrow PUBLICITY AND ADVERTISING REVENUE
Derek Hoare VIC DISCOUNT OFFICER
Jeff Jones ASST NATIONAL REGIONAL ORGANISER(NORTH), ALSO BERSEYSIDE REGION
David Jowett 64 LIBRARIAN (DISK AND CO-ORDINATION), ALSO BLACKPOOL REGION
Alistair Kelman LEGAL CONSULTANT
Joe Kennedy EXHIBITIONS ORGANISER
Will Light PRESS OFFICER, ALSO COVENTRY REGION
Alfred Minter SOFTWARE LIBRARY ORGANISER
David Murray ASSISTANT DISCOUNT OFFICER. (Postal queries only).
Fred Offler BASIC \& MC COURSE ORGANISER
Stephen Rabagliati ACC PRESTEL LIAISON, ALSO UATFORD REGION
Peter Reynolds ASSISTANT EDITOR \& COMPENDIUM EDITUR
Mick Ryan CHAIRMAN, ALSO SOUTH EAST REGION
Mike Todd VICE-CHAIRMAN AND TECHNICAL ADVICE CO-ORDINATOR
Henry Velleman DEPUTY EDITOR
Dave Vorburg 64 SOFTUARE LIBRARY ORCANISER
Raeto West STRATEGIC PLANNING \& SOFTUARE ADVISOR
Brian Uise VIC LIBRARIAN AND DISKETTES ASSISTANT DISCOUNT OFFICER

REGIONAL GROUP CONTACTS

```
    Berkshire , Bracknell
Mrs Lewin , (Organiser. ), 9 Windlesham Road , BRACKNELL , Berkshire RC12 1JX
Tel: Bracknell 0344-423115 (home)
Meets: Based on local Church.
Barkshire ,Slough
Mr B Jones , (Organiser ), 53 Beechwood Avenue , WOODLEY, READING , Berkshire RC5 3DF
Tel: Reading 0734-661494 (home) Slough 0753-34585 Ex 81 (work)
Meetss Slough College of Higher Education,Wellington Street,Slough. 2nd Thursday. 1930
Buckinghamshise , Aylesbury
Mr K H Knight ,(Organiser ), 22 mount Street , AYLESBURY , Buckinghamshire MP2O 2SE
Tels Aylesbury 0296-5181 (home)
Meats: Mandeville Centre, Aylesbury Every Friday 1930-2130
    Cambridgeshire , Peterborough
Mr A P J Scott , ( Secretary ), 18 Coventry Close o Werrington PETERBOROUGH , Cambridgeshire PE4 GNN
Tel: Peterborough 0733-74819 (home) Peterborough 0733-53161 Ex 381 (work)
Meetss Rmon A24, Bretton Woods School, Peterborough Every other Wednesday 1900-2200
Cheshire , Macclesfield
Mr M Mayers , (Organiser ), 46 Green Street , MACCLESFIELD , Cheshire SK11 1J0
Tel: Macclesfield 0625-32852 (home)
Meets: Fermain Club, Oxford Road, Macclesfield Every other Monday 2000-2230nrs
Cheshire ,Stockport
Mr P J Hogan , 3 Greenhalgh Street ,Heaton Norris . STOCKPORT SK4 1SR
Tel: n/a
Meets: * (Ask Contact)
Clevaland, Cleveland
Mr L P Butlar , (Organiser ), 14 Wolsingham Drive , THORNABY Stockton on Tees , Cleveland TS17 90W
Tels Stockton on Tees 0842-762526 (home)
Mests: * (Ask Contact)
Clwyd ,Connah's Quay
Mr J Poole , (Organiser ), 6 Ridgeway Close , CONNAH'S QUAY ,Clwyd CH5 &LZ
Tel: Deeside 0244-815277 (home)
Maets: RAF Sealand + 6 Ridgeway Close, Connah's Quay Wed + 2nd & 4th Tuesday 1630-1930
    Clwyd , Phyl
Mr F Jones , (Organiser.), 77 Millbank Road , RHYL , Clwyd
Tel: Pthyl 0745-54820 (home)
Maets: * (Ask Contact)
Clyde Region , Clasgow North
Mr A Morgan .( Organiser ), 19 Craigmarloch Avenue , Balmoral Park TORRANCE ,Glasgow, Clyde GG4 4AY
Tel: n/a
Meets8 * (Ask Contact)
    County Antrim , Belfast
Mr D Weddell (Organiser.), 9 Upper Cavehill Road oBELFAST , BT15 5EZ
Tels Belfast 0232-711580 (home)
Meets& Last Wednesday.
```


County Antrim, Northern Ireland

Mr D Bolton, (Organiser.), 19 Carrickburn Road, CARRICKFERGUS , County Antrim BT3B 7ND Tel: Carrickfergus 09603-63788 (home) Carrickgergus 09603-69129 (work)
Meets: * (Ask Contact)

Cumbria , Kendal
Mr D R Walker , (Contact.), 7 Kent Park Avenue , KENDAL. © Cumbria LAY 5JT
Tel: Kendal 0539-22863 (home)
Meets: * (Ask Contact)

Derbyshire , Derby
Mr R N Davies FBCO, DCLP , 105 Normanton Road , DERBY , Derbyshire DE1 2GG
Tel: Derby 0332-514016 (home) Derby 0332-41025 (work) Systel No: 332514016
Meets: Derby Professional Colour, Osmaston Works, Osmaston Kd, Derby, 2nd \& 4th Tuesday 1900

```
    Devonshire , Torquay
Mr M Stibbe , ( Organiser. ), The Lawn, Lower Woodfield Hoad , TORCHUAY
Tels n/a
Meets: * (Ask Contact)
```

 Dorset , Poole
 Mr D M Shave , (Organiser.), 97 Canford Cliffs Road , POQLE , Dorset BH13 7EP
Tel: Bournemouth 0202-700428 (home)
Meats: * (Ask Contact)
Durham , Durham
Mr J Cocallis , (Organiser), 20 worcester Road , Newton Hall Estate DURHAM , Durham
Tel: Durham 0385-67045 (home) Systel No: 219990467
Meets: 32 Old Elvet, Durham Every Thursday 1900-
Dyfed, Burry PortLlanelli
Mr F Townsend , (Contact.), Maes-yr-Afon Pinged, BURRY PORT , Oyfed SA1E GJE
Tel: Kidwelly 0554-891065 (home)
Meets: * (Ask Contact)
Dyfed , Talybont
Mr S Kniveton , (Organiser.), Penpompren Hall , TALYBORNT , Dyfed
Tel: Talybont 097086-303 (home)
Meetss * (Ask Contact)
Eire, Dublin
Mr J D Malone , (Organiser.), Software Village , 2 Leeson Park , DUBLIN 6
Tel: Dublin 0001-963488 (work)
Meets: 2 Leeson Park, Dublin
Eire, Dublin South
Mr T MacDonald , (Organiser.), 2 Sycanore Road , Mount Merrion , County DUBLIN
Tels n/a
Meets: * (Ask Contact)
Essex , Basildon
Mr W W Green, (Organiser), 151 The Hatherley , BASILDON , Essex $551420 H$
Tels Basildon 0268-22430 (home)
Meets: * (Ask Contact)
Essex , Cattle Point
Mr M A Cooper , (Chairman), 12 Newpark Road , South Benfleet , Essex SS7 5UT
Tel: South Benfleet 03745-52885 (home) South Benfleet 03745-52885 (work)
Meets: Cattle Point Commodore Comp Club, Richmond Hall, High St, South Benfleet Every other Monday 1900-220G I

Essex ，Chelmsford
Mr J G Ross ，（Organiser ）， 38 Quilp Drive ，CHELIMSFORD ，Essex
Tel：Chelmsford 0245－447948（home）01－637－9111 Ex 2118 （work）
Meets：＊（Ask Contact）
Essex ，Colchester
Mr D Day ，（ Organiser ）， 11 Park Vale Close ，CASTLE HEDINGHAM ，Essex CO9 30S
Tel：Hedingham 0787－60148（home）
Meets：＊（Ask Contact）
Essex ，Ford Dagenham
MI R C Cooper ，（Secretary．）， 117 Belmont Road ，EKITH ，Kent DAB 1LF
Tel：Erith（03224）984－37448（home）01－592－3000／2189／2898（work）
Meets：Thames Foundry Bldg，Thames Aun，Ford Motor Co．，Dagenham． 6 weekly on Monday． 1400
Gloucestershira © Cam
Mrs J Rich 。（Organiser．），Hose Cottage ， 20 0ld Court，Springhill ，CAM Lill 5pF
Tel：Dursley 0453－47708（home）
Meets：Rose Cottage， 20 0ld Court，Springhill，Cam．Last Friday．
Gloucestershire ，Cheltenham
Mr E Syratt ，（Secretary．）， 14 Branch Hill Rise ，Charlton Kings CHELTENHAM ，Gloucestershire GL53 GHld Tel：Gloucester 0242－528678（home）
Meets：Cheltenham Ladies College，Archway Entrance，St George＇s St Last Thursday。 1930

Hampshire ，Basingstoke

Mr M Bell ，（Organiser ）， 250 Gershwin Road ，BASINGSTOKE，Hampshire RG22 4HL．
Tels n／a
Meetsः＊（Ask Contact）
Hampshire ，Farnborough
Mr R Ceere ，（ Organiser．）， 109 York Road ，FARNBOROUCH ，Hampshire GU14 GNQ
Tel：Farnborough 0252－542921（home）Camberley 0276－63377 Ex 4281 （work）Systel No： 252542921 rdg
Meets： 235 High Street，Aldershot．3rd Wednesday
Hampshire ，Gosport
Mr B Cox ，（Organiser．）， 10 Staplers Reach ，Rowner，GOSPORT，Hampshire P013 OEY
Tel：Fareham 0329－280530（home）
Meets：Gosport Community Association，Bury House，Bury Rd，Cosport 1900
Hampshire ，Petersfield
MI A J Cooke LRSC ，（Organiser，Reg Prestel Ed ）， 7 Russell Way ，PETERSFIELD，Hampshire GU31 4LD Tel：Petersfield 0730－62840（home）Hazelmere 0428－55569（work）Systel No：ajc
Meets：Meets at Bedales School，Petersfield．2nd Tuesdays． 1930

Hampshire ，Portsmouth

Mr N J Ryan ，（ Organiser．）， 55 Portchester Road，North End PORTSMOUTH ，Hampshire PO2 7 HZ
Tel：Portsmouth 0705－699871（home）Portsmouth 0705－827681（work）Systel No：732453530 njr
Meets：Portsmouth Polytechnic
Herefrd\＆uorcester o Stourport
Mr M J Merriman 。（ Organiser．）， 12 York Street ，STOURPURT－ON－SEVERN，Worcestershire
Tel： n / a
Meetss 12 York Street，Stourport－on－Severn．Last Thursday．
Hertfordshire ，Hitchin
MI B D Grainger ，（Organiser．）， 73 Minehead Way ，STEVENAGE ，Hertfordshire SG1 2 HZ
Tel：Stevenage 0438－727925（home）Systel No： 438727925 bdg
Meetss Provident Mutual Assurance，Willian Road，Hitchin．Last Wednesday．1930－2230

Hertfordshire , Watford

Mr 5 Rabagliati . (Organiser.), Suite 2, Tarmay House , 146-150 St Albans Road , UATFORD
Tel: Hemel Hempstead 0442-44743 (home) Watford 0923-50161 (work) Systel Na: 019993223
Meets8 Co-op Hall,St Albans Road, apposite junction with Lowestoft Road. 2nd Monday. 1930

```
Iceland, Iceland
Mr G Gislason , ( Organiser ), Syntax , Bleiksarhlid 4, 735 Eskif jordur
Tel: n/a
Meets: * (Ask Contact)
```

Isle of Man , Isle of Man
Mr J W F Livsey , (Organiser), Datacentre Ltd, 4 Athol St, DOUGLAS , Isle of Man
Tel: 0624-25538 (work)
Meet's: (Ask Contact)

Kent , Canterbury
Mr R Moseley , (Secretary), Rosemount , Lord Romney Hill, Weavering , MAIDSTONE
Tel: Maidstone (0622) 96-37643 (home) Maidstone (0622) 96-37643 (work)
Meets: Physics Lab, Kent University. 1st Uednesday. 1945

Kent , South East
MI D Pettet, (Membership Secretary.), 65 Charterhouse Road , ORPINGTON , Kent BR6 GEN
Tel: Orpington (0689) 94-23505 (home) 01-828-8070 Ex 2303 (work) Systel No: 068923505
Meets: Charles Darwin School, Jail Lane, Eiggin Hill. 2nd,3rd,\&4th Thursdays. 1930-2130
Lanarkshire , Bellshill
Mr W G Mcluckie . (Organiser.), 15 Roman Drive , BELLSHILL, Nr Motherwell , Lanarkshire ML4 2JQ
Tel: n/a
Meets: * (Ask Contact)
Lancashire , Blackpool
Mr D W Jowett , (Organiser.), 197 Victoria Road East , THORNTON , Blackpoal FY5 $35 T$
Tel: Blackpool 0253-869108 (home) Blackpool 0253-56635 (work)
Meets: New Venue to be arranged.

Lincolnshire , Boston
Mr R Ashton , (Chairman), 17 Coningsby Close , BOSTON, Lincolnshire PE21 8HP
Tel: Boston 0205-66115 (home) Boston 0205-61122 (work)
Meets: Railway Staff Association Club, Boston Railway Station 1st Tuesday 1930-2200

Lincolnshire „RAF Scampton
Mr C Smith , (Organiser.), 5 Cornwall Close , LINCCLN , Lincolnshire LN1 2UH
Tel: Lincoln 0522-730070 (home) Lincoln 0522-730421 Ex 313 (work)
Meetss Education Centre, RAF Scampton. Weekly, Monday and Tuesday. 1900

London , Acton
Mr K V Meehan , (Organiser), 236 Chesterton Court , ACTON, London U3
Tels 01-993-5660 (hame) Systel No: kum
Meets: Work

London , Battersea
Mr S Bransgrove , (Organiser.). 31 Mysore Road , BATTERSEA, London Su11 5RY
Tel: n/a
Meetss * (Ask Contact)
London , Maida Vale
Mr M M Franks 。 (Organiser.) o 196 Castellain Mansions, Castellain Road Maida Vale , LONDON w9 1HB
Tel: 01-286-0650 (home) 01-493-5141 (work) Systel No: 012860650
Meets: 196 Castellain Mansions, Maida Vale Thursday 9Aug84 1930-

London , MOD Branch, RAFPCA
Wg Cdr C R Deeley RAF , (Chairman), 50 Bedmond Road, Leverstock Green , HEMEL HEMPSTEAD HP3 QLL Tel: Hernel Hempstead 0442-55110 (home) 01-218-0988/0546 (work)
Meets: Northumberland House,Nothumberland Avenue, LONOON Mid-week, monthly 1245-1345

London , Stanmore

Mr G M Harris, (Organiser), 27 Silverstone Way , STANMURE , Middlesex HA7 4HS
Tel8 01-954-4548 (home)
Meets: Bernay's Hall, Stanmore Broadway Every 3rd Thursday 1900-2200 hrs
London , Teddington
Mr G Squibb, (Contact.), 108 Teddington Park Road, TEDDINGTON, London
Tel: 01-977-2346 (home)
Meets: * (Ask Contact)
London , Wembley
Mr B Vyas, (Contact), 277 Ealing Road , WEMBLEY, London HAO 1EU
Tel: 01-998-3712 (home)
Meets: * (Ask Contact)
London Nul , RAF Hendon
Sgt M Kendell , (Organiser), Education Centre , RAF HENOON Aerodrome Road , LONDON NWS 5JB
Tel: 01-202-6577 Ex 248 (work)
Meets: Education Centre, RAF Hendon Thursday 1900
Merseyside , Liverpool
Mr J Stout , (Organiser.), 6 College Avenue , FOKMBY , Merseyside L37 3 JJ
Tel: Formby 07048-74266 (home) Southport 0704-31388 (work)
Meets: Merchant Taylors' School for Boys, Great Crosby. 2nd Thursday. 1900-2300

Merseyside , Merseyside
Mr J P Jones , (Chairman.), 41 Virginia Avenue, LYDIATE , Mierseyside L31 2NN
Tel: Liverpool 051-526-4813 (home) Liverpool OS1-334-4U90 Ex 222 (work)
Meets: Cardinal Allens Grammar School,Honeys Green Lane, 4 Derby. Alternate Wednesdays. 1930-2200

Middlesex . Greenford
Mr R D Green , (Secretary), it Legion Road , GREENFORD , Middlesex UB6 BXG
Tel: 01-578-2302 (home) 01-750-7262 (wark)
Meets: Room 7, Greenford Community Centre, Oldfield Lane, Greenford Every Thursday 1900-2200 hrs
New Zaaland, New Plymouth
Or D R Black , (Organiser), Box 5087 , Western New Plymouth , Taranaki
Tel: n / a
Meetss * (Ask Contact)
Norfolk , Cromer
Mr J Blair , (Contact point.), 7 Beach Road , CROMER , Norfolk
Tel: Cromer 0263-512849 (home)
Meets: VIC20 contact point only.
Norfolk, Wretton
Mr P Petts, (Organiser), Bramley Hale, WRETTON Kings Lynn , Norfolk PE33 GQS
Tel: Stoke Ferry 0366-500692 (home) Stoke Ferry 0366-500846 (work) Systel No: 366500846
Meets: Regional contact.
North Yorkshire , Scarborough
Mr K J Prince , (Organiser), 59 Chantry Road , EAST AYTON Scarborough , Yorkshire Y013 GER
Tel: Scarborough 0723-863737 (home)
Meets: Gibson's Hotel, queen's Parade, Scarborough, North Yorkshire 3rd Tuesday 1930-2200

Narthamptonshire ，Corby
Mr P Ashby ，（Organiser ）， 215 Lincoln Way ，CORBY ，Northamptonshire
Tel：Corby 05363－4442（home）
Meets：＊（Ask Contact）
Northumberland ，Prudhoe－on－Tyne
Mr J R Christer ，（ Organiser ）， 16 Redwell RdgDaklands Estate ，PRUDHOE－ON－TVNE ，Northumberland NE42 5AP
Tel：Prudhoe 0661－35507（hame）
Meets：Kimberley Clark Ltd，Sports \＆Social Club，Prudhoe Mill
Nottinghamshire ，Mapperley
Mr M Graves 。（ Organiser．），8 Digby Hall Drive ，Gunthorpe Road GEDLING 。Nottinghamshire NG4 4JT
Tel：n／a

Nottinghamshire ，Nottingham

Mr E D Harvey，（Organiser．），G8 Roseleigh Avenue，NOTIINGHAM ，Nottinghamshire NG3 GFH
Tel：Nottingham 0602－608491（home）
Meets：Castlegate Congregational Federation Building，Nottingham，4th Monday．1930－2230

Oxfordshire ，Banbury
Mr J Temple，（Organiser．），Kibanda Rose Bank ，BLOXHAM ，Oxfordshire
Tel：n／a
Meets：North Oxon Technical College，Banbury

Oxfordshire ，Witney
Mr \＆Mrs C Ross－Smith ，（ Organiser ），Enghaven，School Road ，FINSTUCK ，Oxfordshire OX7 38N
Tel：Ramsden 099386－697（home）
Meets：＊（Ask Contact）
Somerset ，Somerset
Mr P Montague ，（Organiser．）， 17 Deane Drive Galmington ，TAUNTON ，Somerset TA1 5PF
Tel：Taunton 0823－75630（home）Eristol U272－777691 Ex 215 （work）
Meetss 12 Laxton Close，Taunton．
South Yorkshire ，Sheffield
Mr R Wood，（ Organiser．）， 13 Bowland Crescent，Ward Green BARNSLEY，South Yorkshire SYO 5JS
Tel：Barnsley 0226－85084（home）Chesterfield U246－811585（work）
Meets：University Building，Mechanical Eng。，Mappin Street，Sheffield 1st Uednesday 1915－2100
Strathclyde ，Ayr
Mir J Smith ，（Organiser and Reg Co－ord ）， 19 Brewlands Road ，SYinINGTON Kilmarnock ，Strathclyde KA1 5RU
Tel：Kilmarnock 0563－830407（home）Systel No： 56383040 ？
Meets：Symington Primary School，Symington，Kilmarnock 1st \＆3rd Wednesdays．1yUu－2100

Strathclyde ．Glasgow
Dr J MacBrayne ，（ Contact．）， 27 Paidmyre Crescent ，NEUTON MMEARNS ，Glasyow
Tel：Glasgow 041－639－5686（home）
Meets：Regional contact，helps and directs to John Smith RN102．

```
Strathclyde ,Glasgow
Mr A J Quin . Dept of Environnent Studies . Glasgow Coll of Bldg & Printg , 60 N Hanover St G1 2BP
Tel: Glasgow 041-332-3969 (work)
Meetss * (Ask Contact)
    Strathclyde , Paisley
Mr C Heath ,(Organiser ), 41 Thrushcraig Crescent , PAISLEY, Strathclyde PA2 GPP
Tel: n/a
Meetss The South End Action Centre, Stock Street. Paisley Alternate Mondays 2015-2230 hrs
```

```
Suffolk . Bury St Edmunds
Mr A Morris , (Organiser.), 30 Kelso Road , BURY ST. EDMUHDS , Suffolk IP33 2EL
Tel: Bury St Edmunds 0284-61870 (home) Bury St Edmunds 0284-69661 (wark) Systel No: 28469661
Meets% The Coach House, Long Brackland,Bury St Edmunds. 2nd Wednesday 1930-
Suffolk ,Mildenhall
Master Sergeant F Owens , (Organiser ), Commodore Co-ordinator , Bax 3241 RAF Mildenhall , Suffolk
Tel: Erriswell 063881-3481 (hane) Systel No: 28469661
Meets: USAF Recreation Centre,RAF Mildenhall. 3rd Sunday. 1400
Warwickshire © Coventry
Mr W H Light , ( Chairman. ), 22 Ivybridge Road, Styvechale COVENTRY, West Miolands CV3 5PH
Tel: Coventry 0203-413511 (home) Coventry 0203-462634 (School) (work) Systel No: 203413511
Meets: Stoke Park School & Community College. 4th Wednesday.(Not Aug or Dec) 1500-2200. &4
West Cermany , Berlin
Major E F Carrel , (Organiser. ), Berlin ICPUC , 29 Signal Regt , BERLIN BFPO 45
Tel: Watford 0923-81209 (home) 010-49-30-309-4476 (work)
Meets& * (Ask Contact)
West Germany ,Minden
Mr B Dempster , (Vice Chairman. ), Vice Chairman, b64 Squadron AAC LAD , BFPO 29
Tel: n/a
Meats8 * (Ask Contact)
West Midlands , West Midlands
Mr J Bowman ,( Organiser. ), 6 The Oval , ALBHIGHTON, West Midlands
Tel: No telephone (home) Albrighton 090722-2393 Ex203/517 (work)
Meets: Old Town Hall,Red Lion St, Wolverhampton. 1st & 3rd Thursdays. 1900
```


ODDS AND ENDS

by Brian Grainger

1) Kaeto West, he of the PET bible fame, has written another book. Called 'Programming the VIC' it will no doubt become the VIC bible! Cost is 15.90 from Biblios Ltdo, Star Road, Partridge Green, Horsham, W. Sussex RH13 8LD (see yellow insert - Ed.).

Review next time maybe.
2) The 64 bible by Raeto West is expected around March next year.
3) It may have been coincidence but I'm sure my MPS802 printer stopped printing when the paper inadvertently ran out when using Easyscript. If it does have a paper sensing mechanism I am impressed. It always worries me that if the paper runs out my print head gets bashed on the roller.
4) After all the rude comments about the MPS802 manual last time I am beginning to wonder if I have got a new edition. I find it readable, mentions all the facilities I know about (except that mentioned in 3)) and unlike Bert Millest's manual it does give the Unenhance control code as chr\$(15). It is copyrighted 1984, but no other clue to print date is given.
5) The Jim Butterfield disk, mentioned in September, not only includes some synthesiser music but also a program to play music from the keyboard. It includes some interesting slide effects as well.
--oOo--

1541 EXPRESS - REVIEW UPDATE

Following the review of the 1541 Express in the last issue of the newsletter we are very pleased to say that RAM Electronics have contacted us with news of two important updates. Firstly a change has been made to the operating system so that use of SHIFTed RUN/STOP now loads the first program from disk using the format LOAD"\#",8,1 (the ',1' does not apparently appear on the screen!). This is a very worthwhile change negating one of my major criticisms.

Secondly, and of equal interest, RAM are offering members a 10% discount on this item (we are trying to persuade them to offer a discount on their whole range, so keep an eye on Discount Corner). The discounted price is $£ 45.85$ including VAT and postage and packing. Cheques or Postal Orders should be made payable to RAM Electronics (Fleet) Ltd and sent with your name, address AND full ICPUG membership number to:

Richard Brown
RAM Electronics (Fleet) Ltd
106 Fleet Road
Fleet
Hants GU13 8PA
Telephone enquiries:- 025145858

DISCOUNT CORNER

Previous 1984 Discount Corners appeared on pages 62, 135, 204, 295 and 376. The article on page 121 gave general advice.

WRITTEN ENQUIRIES。

David Murray would welcome your written enquiries. Please send these to 8, Enticott Close, Tankerton, Whitstable, Kent CT5 3ET with a 13 p or a 17 p stamp, since David uses window envelopes.

TASKSET

This company will allow members 1.00 discount from any of their advertised products such as Gyropod, Pipeline, Jammin, Cosmic Convoy and Boso's Night Out all for the CBM64. The normal selling prices for tapes are $£ 6.90$ and $£ 9.99$ for disks. However, Cadcam Warrier will sell at $£ 9.95$ for tapes and $£ 12.95$ for disks. Please place your orders direct with Taskset Ltd, 13 High Street, Bridlington, YO16 4PR. Please quote your membership number when ordering and if you have any queries please contact Mr AdM. Nutter, telephone 0262 73798.

RAM ELECTRONICS。

See Henry Velleman's addendum about the 1541 Express (10% discount for members on direct ordering, post free).

DATALECT COMPUTER SERVICES LTD

This company will allow 15% discount from their standard repair charges (as listed below) for Commodore products. Their charges are based on the delivery and collection costs being paid for by members and that the cost of parts used and VAT should be added to the prices listed. STANDARD LIST PRICES are VIC20 220.00 ; C64 $£ 25.00$; C2N Cassette deck £1500; 1541 disk drive $£ 3500$; all other disk drives $£ 4500$; all other microcomputers and printers branded CBM (except 6400) £40.00. Please call Paul Dunn, Service Manager, before visiting; his 'phone number is Woking (04862) 25995 and address 12 Woking Business Park, Albert Drive, Woking, Surrey GU12 5JY.

Finally, please accept our wishes for a Happy Christmas and a Good Computing (CBM) New Year. From Brian, David, Derek and John the Discount Men.

READERS WRITE . . .

SAVE AND REPLACE BUG

Roger Priestly, 5 Park Cottages, Mayles Lane, Wickham, Hants writes:
The controversy over ©-REPLACE rages on, and we are still no nearer a definite answer. All that can be said with certainty is that there are bugs in Commodore DOS The existence and location of one of these bugs has been known for years, and it is inexcusable that nothing has been done about it, particularly when the solution is obvious and simple, I refer, of course, to the problem with SCRATCH and unclosed files SCRATCH works by following the chain of sector pointers on the disc, freeing each used sector in the BAM. The problem with an unclosed file is that this chain is not correctly terminated, and can lead anywhere on the disc. Blocks will be freed until a correct termination is found, and this may well include part of an active file. Subsequent file creation will then overwrite the "free" part of this file, and chaos looms - SCRATCHing files corrupted in this way merely makes matters worse.
As I said earlier, the solution is simple. SCRATCH should test for the "unclosed file" condition, and either (a) refuse to touch them at all, or (b) simply delete the Directory entry, leaving the blocks allocated in the BAM. Option (b) would appear to create fewer problems. Either option will leave the disc untidy, and VERIFY is still needed, but at least valuable files will not be scrambled. PLEASE, Mr. Commodore, DO something. There is a simple test for screwed discs, using a dual drive. If the files of the suspect disc are COPYed to a newly formatted disc, and BLOCKS FREE on the copy is less than on the original, file problems exist. The converse is not necessarily true, unfortunately.

TURBO LOAD CASSETTES

| Kemp of 81 Sunderland Ave, Welling, Kent writes:
I have a CBM64 used in conjunction with a C2N cassette deck with which I was able to LOAD and SAVE programs with no problems at all until I bought a "TURBO LOAD" game. Then I was unable to LOAD every time, sometimes the Header would a ppear on my screen and once the game loaded.
1 immediately suspected the cassette itself and had it changed, with no difference at all. Commodore suggested a faulty cassette player which luckily was still under warranty. This was changed and cleared the problem.
After speaking to other users of C2N cassette players it appears that the heads in the player can go out of alignment. They can be adjusted, although I would suggest a dealer to carry out the work as I understand the adjustments are critical and the cross headed screwdriver required is very small.

DO IT YOURSELF RS232 FOR THE 64
B Cutts of 12 Cedar Close, Meopham, Kent writes:
. . . it is possible to produce an RS232 adaptor for the C64 user port for about 5.00. It involves using only two chips (MC1488 and MC1489 line driver/receiver IC's) plus a couple of transistors and a few resistors and capacitors. Power for the circuit is obtained from the computer and the unit gives out proper $+12 v$ and $-12 v$ RS232 levels as well as converting down to 45 v for the computer.

A suitable version of this circuit appeared in the August 1984 edition of PRACTICAL ELECTRONICS, and they also produced a PCB for the project.
For those who are interested, back numbers can be obtained for $£ 1.100$ from :- POST SALES DPPT (PRACTICAL 日ECTRONICS), IPC MAGAZINES LTD, LAVNCTON HOUSE, 25 LAVINGTON ST, LONDON SE1 OPF (or try your local library - Ed).
--oOo--

MEMBERS' SALES AND WANTS

FOR SALE

Audiogenic MAGPIE 64 database (cartridge) complete package as new. Very Powerful as reviewed ICPUG newsletter March 1984. £59; JM Muir tel. 0292 74237/268410 evenings.

Wordpro 4 word processing package for 8032 PET with 8050 disk drives. Includes extensive manual, program disk and ROM. Current retail price $£ 395+$ VAT, yours for only.£100; B Cutts tel. 0474812523.

Automatic and programable $C B$ radio scanner. $C B$ radio together with interface and program. Built for VIC 20 but could be altered. Features include simplex transmission. £65 (ring for further details); also cassette version of Simplicalc for VIC 20. £250; J Sykes tel. Eastbourne 32403.

CBM64 cassettes:- Bumping Buggies £450; Hustler £350; Packacuda £400; Acardia £450; Revise "O" + CSE Physics £650; all original and new, only 5 months old; M Amin tel. 0213267383.

Following items little used and in excellent condition:- Dual disk drive 4040. .£350; CBM64 computer and 1701 colour monitor.£250 or monitor available separately for £125; DW Bennett tel. 0425618253 (evenings)/04252 72511 (office).

Phillips TP200 monochrome (green screen) monitor, very good condition. $£ 60$ ono; L Faulkner tel. 0533704676.

4040 Dual Disk Drive complete with IEEE to IEEE cable £400; R Patey tel. 0403 64027(home)/0403 812738(work).

WANTED
Program to convert Silicon Office text files to Wordcraft; J Sykes tel. Eastbourne 32403.

SOFTWARE LIBRARIANS

8050	VIC-20
Joe Griffin	Brian Wise
Clovelly	17 Knighton Close
Lynwick Street	South Croydon
Rudgwick	Surrey
Horsham	CR2 6DP
W Sussex RH12 3DJ	
*also responsible for 64/VIC programs on 8050 disks	
CHIEF LIBRARIANS (and DISK copies)	64 LIBRARY
Northern UK	Southern UK
David Jowett	David Annal
Windmill Electronics	142 Windermere Rd
335 Red Bank Road	London
Bispham, Blackpool FY2 OHJ	SW16 5HE

CASSETTE COPIES

Surnames beginning with:

A B C	DEF	CHI
Fred Owens	William McLuckie	R Burns
PO Box 3241	15 Roman Drive	48 Grasmere Rd
RAF Mildenhall	Bellshill	Royton
Suffolk	Lanarkshire	Oldham
	Scotland ML4 2JQ	Lancs OL2 6SR
JKL	M NO	PQR
Mike Hingston	Barry Whitelaw	Nigel Corry
1 Stafford Rd	25 Buckerills	4 Horsted Way
Eccles	Basildon	Rochester
Manchester M30 9HN	Essex	Kent ME1 2 XY
STU		$\checkmark W \times Y Z$
Raymond Medford		Bill Hull
7 Thom Grove		Rocklea
Hale		Pilling Lane
Altrincham		Preesall
Cheshire WA15 9AW		Blackpool, Lancs

